Lời giải của giáo viên
Ta có \(\int\limits_1^{\rm{e}} {\left( {2 + x\ln x} \right)} {\rm{d}}x = \int\limits_1^{\rm{e}} 2 {\rm{d}}x + \int\limits_1^{\rm{e}} {x\ln x} {\rm{d}}x = 2x\left| \begin{array}{l} {\rm{e}}\\ 1 \end{array} \right. + I = 2{\rm{e}} - 2 + I\) với \(I = \int\limits_1^{\rm{e}} {x\ln x} {\rm{d}}x\)
Đặt \(\left\{ \begin{array}{l} u = \ln x\\ {\rm{d}}v = x{\rm{d}}x \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {\rm{d}}u = \frac{1}{x}{\rm{d}}x\\ v = \frac{{{x^2}}}{2} \end{array} \right.\)
\( \Rightarrow I = \frac{{{x^2}}}{2}\ln x\left| \begin{array}{l} {\rm{e}}\\ 1 \end{array} \right. - \int\limits_1^{\rm{e}} {\frac{x}{2}} {\rm{d}}x = \frac{{{x^2}}}{2}\ln x\left| \begin{array}{l} {\rm{e}}\\ 1 \end{array} \right. - \frac{{{x^2}}}{4}\left| \begin{array}{l} {\rm{e}}\\ 1 \end{array} \right. = \frac{{{e^2}}}{2} - \frac{1}{4}\left( {{e^2} - 1} \right) = \frac{{{e^2} + 1}}{4}\)
\(\Rightarrow \int\limits_1^{\rm{e}} {\left( {2 + x\ln x} \right)} {\rm{d}}x = 2{\rm{e}} - 2 + \frac{{{{\rm{e}}^2} + 1}}{4} = \frac{1}{4}{{\rm{e}}^2} + 2{\rm{e}} - \frac{7}{4}\).
\( \Rightarrow \left\{ \begin{array}{l} a = \frac{1}{4}\\ b = 2\\ c = - \frac{7}{4} \end{array} \right. \Rightarrow a - b = c\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z=-5+2i. Phần thực và phần ảo của số phức \(\bar{z}\) lần lượt là
Tính tích phân \(I=\int\limits_{1}^{2}{2x\sqrt{{{x}^{2}}-1}\text{d}x}\) bằng cách đặt \(u={{x}^{2}}-1\), mệnh đề nào dưới đây đúng?
Cho số phức \(z,\,{{z}_{1}},\,{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}-4-5i \right|=\left| {{z}_{2}}-1 \right|=1\) và \(\left| \overline{z}+4i \right|=\left| z-8+4i \right|\). Tính \(\left| {{z}_{1}}-{{z}_{2}} \right|\,\,\) khi \(P=\left| z-{{z}_{1}} \right|\,+\left| z-{{z}_{2}} \right|\) đạt giá trị nhỏ nhất
Cho số phức z thoả mãn \(\frac{1+i}{z}\) là số thực và \(\left| z-2 \right|=m\) với \(m\in \mathbb{R}\). Gọi \({{m}_{0}}\) là một giá trị của m để có đúng một số phức thoả mãn bài toán. Khi đó
Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có \(A\left( -1;1;6 \right), B\left( -3;-2;-4 \right), $C\left( 1;2;-1 \right), D\left( 2;-2;0 \right)\). Điểm \(M\left( a;b;c \right)\) thuộc đường thẳng CD sao cho tam giác ABM có chu vi nhỏ nhất. Tính a+b+c.
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+10y-6z+49=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).
Cho số phức z thỏa mãn \(\left( 1-i \right)z+4\bar{z}=7-7i\). Khi đó, môđun của z bằng bao nhiêu?
Cho hàm số \(f\left( x \right)\) không âm, có đạo hàm trên đoạn \(\left[ 0\,;\,1 \right]\) và thỏa mãn \(f\left( 1 \right)=1, \left[ 2f\left( x \right)+1-{{x}^{2}} \right]{f}'\left( x \right)=2x\left[ 1+f\left( x \right) \right], \forall x\in \left[ 0\,;\,1 \right]\). Tích phân \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=x\left( x+1 \right){{\left( x-2 \right)}^{2}}\) với mọi \(x\in \mathbb{R}\). Giá trị nhỏ nhất của hàm số \(y=f\left( x \right)\) trên đoạn \(\left[ -1;2 \right]\) là
Rút gọn biểu thức \(A=\frac{\sqrt[3]{{{a}^{7}}}.{{a}^{\frac{11}{3}}}}{{{a}^{4}}.\sqrt[7]{{{a}^{-5}}}}\) với a>0 ta được kết quả \(A={{a}^{\frac{m}{n}}}\) trong đó m, \(n\in {{N}^{*}}\) và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy \(\left( ABCD \right)\), biết \(SD=2a\sqrt{5}\), SC tạo với mặt đáy \(\left( ABCD \right)\) một góc \(60{}^\circ \). Tính theo a khoảng cách giữa hai đường thẳng DM và SA.
Tìm tập xác định D của hàm số \(y={{\left( {{x}^{2}}-2x+1 \right)}^{\frac{1}{3}}}\).
Cho hàm số đa thức bậc ba y = f(x) có đồ thị như hình vẽ.
Hàm số đã cho đạt cực tiểu tại