Câu hỏi Đáp án 2 năm trước 48

Cho số phức \(z,\,{{z}_{1}},\,{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}-4-5i \right|=\left| {{z}_{2}}-1 \right|=1\) và \(\left| \overline{z}+4i \right|=\left| z-8+4i \right|\). Tính \(\left| {{z}_{1}}-{{z}_{2}} \right|\,\,\) khi \(P=\left| z-{{z}_{1}} \right|\,+\left| z-{{z}_{2}} \right|\) đạt giá trị nhỏ nhất

A. 8

B. 6

C. \(\sqrt {41} \)

D. \(2\sqrt 5 \)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Gọi A là điểm biểu diễn của số phức \(\,{{z}_{1}}\). Suy ra A thuộc đường tròn \(\left( {{C}_{1}} \right)\,\,\,\) tâm \(\,{{I}_{1}}\left( 4;5 \right),R=1\).

Gọi B là điểm biểu diễn của số phức \(\,{{z}_{2}}\). Suy ra B thuộc đường tròn \(\left( {{C}_{2}} \right)\) tâm \(\,{{I}_{2}}\left( 1;0 \right),R=1\).

Gọi \(M\left( x;y \right)\) là điểm biểu diễn của số phức \(\,z=x+yi\)

Theo giả thiết \(\left| \overline{z}+4i \right|=\left| z-8+4i \right|\Leftrightarrow x-y=4\). Suy ra M thuộc đường thẳng \(\left( d \right)\,\,x-y-4=0\)

Gọi \(\left( {{C}_{2}}' \right)\) có tâm \(\,{{I}_{2}}'\left( 4;-3 \right),R=1\) là đường tròn đối xứng với đường tròn \(\left( {{C}_{2}} \right)\) tâm \(\,{{I}_{2}}\left( 1;0 \right),{{R}_{2}}=1\) qua đường thẳng d. Gọi B' là điểm đối xứng với đối xứng với B qua đường thẳng d. Ta có \(P=\left| z-{{z}_{1}} \right|\,+\left| z-{{z}_{2}} \right|=MA+MB=MA+MB'\ge AB'={{I}_{1}}{{I}_{2}}'-{{R}_{1}}-{{R}_{2}}=6\).

Dấu = xảy ra khi và chỉ khi \(A,B',{{I}_{1}},{{I}_{2}}',M\) thẳng hàng. Khi đó \(\overrightarrow{{{I}_{1}}A}=\frac{1}{8}\overrightarrow{{{I}_{1}}{{I}_{2}}'}\,\,\) suy ra \(A\left( 4;4 \right)\) và \(\overrightarrow{{{I}_{2}}B'}=\frac{1}{8}\overrightarrow{{{I}_{2}}'{{I}_{1}}}\,\,\) suy ra \(B'\left( 4;-2 \right)\Rightarrow B\left( 2;0 \right). AB=2\sqrt{5}\).

Vậy \(\left| {{z}_{1}}-{{z}_{2}} \right|\,=2\sqrt{5}\,\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho số phức z=-5+2i. Phần thực và phần ảo của số phức \(\bar{z}\) lần lượt là

Xem lời giải » 2 năm trước 141
Câu 2: Trắc nghiệm

Tính tích phân \(I=\int\limits_{1}^{2}{2x\sqrt{{{x}^{2}}-1}\text{d}x}\) bằng cách đặt \(u={{x}^{2}}-1\), mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 48
Câu 3: Trắc nghiệm

Cho số phức z thoả mãn \(\frac{1+i}{z}\) là số thực và \(\left| z-2 \right|=m\) với \(m\in \mathbb{R}\). Gọi \({{m}_{0}}\) là một giá trị của m để có đúng một số phức thoả mãn bài toán. Khi đó

Xem lời giải » 2 năm trước 48
Câu 4: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có \(A\left( -1;1;6 \right), B\left( -3;-2;-4 \right), $C\left( 1;2;-1 \right), D\left( 2;-2;0 \right)\). Điểm \(M\left( a;b;c \right)\) thuộc đường thẳng CD sao cho tam giác ABM có chu vi nhỏ nhất. Tính a+b+c.

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+10y-6z+49=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Cho số phức z thỏa mãn \(\left( 1-i \right)z+4\bar{z}=7-7i\). Khi đó, môđun của z bằng bao nhiêu?

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) không âm, có đạo hàm trên đoạn \(\left[ 0\,;\,1 \right]\) và thỏa mãn \(f\left( 1 \right)=1, \left[ 2f\left( x \right)+1-{{x}^{2}} \right]{f}'\left( x \right)=2x\left[ 1+f\left( x \right) \right], \forall x\in \left[ 0\,;\,1 \right]\). Tích phân \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Hàm số \(y={{3}^{{{x}^{2}}-x}}\) có đạo hàm là

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=x\left( x+1 \right){{\left( x-2 \right)}^{2}}\) với mọi \(x\in \mathbb{R}\). Giá trị nhỏ nhất của hàm số \(y=f\left( x \right)\) trên đoạn \(\left[ -1;2 \right]\) là

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy \(\left( ABCD \right)\), biết \(SD=2a\sqrt{5}\), SC tạo với mặt đáy \(\left( ABCD \right)\) một góc \(60{}^\circ \). Tính theo a khoảng cách giữa hai đường thẳng DM và SA.

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Tìm tập xác định D của hàm số \(y={{\left( {{x}^{2}}-2x+1 \right)}^{\frac{1}{3}}}\).

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.

Cho các mệnh đề sau:

I. Hàm số đồng biến trên các khoảng \(\left( -\infty ;-3 \right)\) và \(\left( -3;-2 \right)\).

II. Hàm số đồng biến trên khoảng \(\left( -\infty ;-2 \right)\).

III. Hàm số nghịch biến trên khoảng \(\left( -2;+\infty  \right)\).

IV. Hàm số đồng biến trên \(\left( -\infty ;5 \right)\).

Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Rút gọn biểu thức \(A=\frac{\sqrt[3]{{{a}^{7}}}.{{a}^{\frac{11}{3}}}}{{{a}^{4}}.\sqrt[7]{{{a}^{-5}}}}\) với a>0 ta được kết quả \(A={{a}^{\frac{m}{n}}}\) trong đó m, \(n\in {{N}^{*}}\) và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Cho hàm số đa thức bậc ba y = f(x) có đồ thị như hình vẽ.

Hàm số đã cho đạt cực tiểu tại

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »