Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Cho các mệnh đề sau:
I. Hàm số đồng biến trên các khoảng \(\left( -\infty ;-3 \right)\) và \(\left( -3;-2 \right)\).
II. Hàm số đồng biến trên khoảng \(\left( -\infty ;-2 \right)\).
III. Hàm số nghịch biến trên khoảng \(\left( -2;+\infty \right)\).
IV. Hàm số đồng biến trên \(\left( -\infty ;5 \right)\).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1
B. 4
C. 2
D. 3
Lời giải của giáo viên

Ta thấy nhận xét I, II,III đúng, nhận xét IV sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z=-5+2i. Phần thực và phần ảo của số phức \(\bar{z}\) lần lượt là
Tính tích phân \(I=\int\limits_{1}^{2}{2x\sqrt{{{x}^{2}}-1}\text{d}x}\) bằng cách đặt \(u={{x}^{2}}-1\), mệnh đề nào dưới đây đúng?
Cho số phức \(z,\,{{z}_{1}},\,{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}-4-5i \right|=\left| {{z}_{2}}-1 \right|=1\) và \(\left| \overline{z}+4i \right|=\left| z-8+4i \right|\). Tính \(\left| {{z}_{1}}-{{z}_{2}} \right|\,\,\) khi \(P=\left| z-{{z}_{1}} \right|\,+\left| z-{{z}_{2}} \right|\) đạt giá trị nhỏ nhất
Cho số phức z thoả mãn \(\frac{1+i}{z}\) là số thực và \(\left| z-2 \right|=m\) với \(m\in \mathbb{R}\). Gọi \({{m}_{0}}\) là một giá trị của m để có đúng một số phức thoả mãn bài toán. Khi đó
Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?
Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có \(A\left( -1;1;6 \right), B\left( -3;-2;-4 \right), $C\left( 1;2;-1 \right), D\left( 2;-2;0 \right)\). Điểm \(M\left( a;b;c \right)\) thuộc đường thẳng CD sao cho tam giác ABM có chu vi nhỏ nhất. Tính a+b+c.
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+10y-6z+49=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).
Cho hàm số \(f\left( x \right)\) không âm, có đạo hàm trên đoạn \(\left[ 0\,;\,1 \right]\) và thỏa mãn \(f\left( 1 \right)=1, \left[ 2f\left( x \right)+1-{{x}^{2}} \right]{f}'\left( x \right)=2x\left[ 1+f\left( x \right) \right], \forall x\in \left[ 0\,;\,1 \right]\). Tích phân \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \({f}'\left( x \right)=\left( x-1 \right){{\left( x-2 \right)}^{2}}\left( x+3 \right)\). Số điểm cực trị của hàm số đã cho là
Cho số phức z thỏa mãn \(\left( 1-i \right)z+4\bar{z}=7-7i\). Khi đó, môđun của z bằng bao nhiêu?
Diện tích toàn phần của hình trụ có độ dài đường cao h=4 và bán kính đáy r=2 bằng:
Tìm tập xác định D của hàm số \(y={{\left( {{x}^{2}}-2x+1 \right)}^{\frac{1}{3}}}\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy \(\left( ABCD \right)\), biết \(SD=2a\sqrt{5}\), SC tạo với mặt đáy \(\left( ABCD \right)\) một góc \(60{}^\circ \). Tính theo a khoảng cách giữa hai đường thẳng DM và SA.
Rút gọn biểu thức \(A=\frac{\sqrt[3]{{{a}^{7}}}.{{a}^{\frac{11}{3}}}}{{{a}^{4}}.\sqrt[7]{{{a}^{-5}}}}\) với a>0 ta được kết quả \(A={{a}^{\frac{m}{n}}}\) trong đó m, \(n\in {{N}^{*}}\) và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?