Cho a, b là các số thực thỏa mãn a > 0 và \(a \ne 1\) biết phương trình \({a^x} - \frac{1}{{{a^x}}} = 2\cos \left( {bx} \right)\) có 7 nghiệm thực phân biệt. Tìm số nghiệm thực phân biệt của phương trình \({a^{2x}} - 2{a^x}\left( {\cos bx + 2} \right) + 1 = 0\)
A. 14
B. 0
C. 7
D. 28
Lời giải của giáo viên
\(\begin{array}{l}
{a^{2x}} - 2{a^x}\left( {\cos bx + 2} \right) + 1 = 0 \Leftrightarrow {a^x} + \frac{1}{{{a^x}}} = 2\left( {\cos bx + 2} \right)\\
\Leftrightarrow {\left( {{a^{\frac{x}{2}}}} \right)^2} + \frac{1}{{{{\left( {{a^{\frac{x}{2}}}} \right)}^2}}} - 2 = 2\left( {\cos bx + 1} \right) \Leftrightarrow {\left( {{a^{\frac{x}{2}}} - \frac{1}{{{a^{\frac{x}{2}}}}}} \right)^2} = 2.2{\cos ^2}\frac{{bx}}{2}\\
\Leftrightarrow \left[ \begin{array}{l}
{a^{\frac{x}{2}}} - \frac{1}{{{a^{\frac{x}{2}}}}} = 2\cos \frac{{bx}}{2}\\
{a^{\frac{x}{2}}} - \frac{1}{{{a^{\frac{x}{2}}}}} = - 2\cos \frac{{bx}}{2}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
{a^{\frac{x}{2}}} - \frac{1}{{{a^{\frac{x}{2}}}}} = 2\cos \frac{{bx}}{2}{\rm{ }}\left( 1 \right)\\
{a^{ - \frac{x}{2}}} - \frac{1}{{{a^{ - \frac{x}{2}}}}} = 2\cos \left( {\frac{{b\left( { - x} \right)}}{2}} \right){\rm{ }}\left( 2 \right)
\end{array} \right.
\end{array}\)
Theo bài ra ta có phương trình (1) có 7 nghiệm phân biệt.
Ta thấy nếu là nghiệm của (1) => (2) có nghiệm -x0.
Xét \(f\left( 0 \right) = 1 - 2.1\left( {1 + 2} \right) + 1 = - 4 \ne 0 \Rightarrow x = 0\) không là nghiệm của (1) \( \Rightarrow {x_0} \ne 0 \Rightarrow - {x_0} \ne {x_0}{\rm{ }}\forall {x_0}\)
Vậy phương trình đề bài có tất cả 14 nghiệm.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB// CD), BC = 2a,AB = AD = DC = a với a > 0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x > 0; M khác O và D. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)
Tìm tập xác định D của hàm số \(y = {\left( {5 + 4x - {x^2}} \right)^{\sqrt {2019} }}\)
Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R = 6cm. I, K là 2 điểm trên đoạn OA sao cho OI = IK = KA . Các mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính \({r_1},{r_2}\). Tính tỉ số \(\frac{{{r_1}}}{{{r_2}}}\)
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = x,AD = 1 . Biết rằng góc giữa đường thẳng A'C và mặt phẳng \(\left( {ABB'A'} \right)\) bằng 30°. Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp ABCD.A'B'C'D'
Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:
Cho hàm số y = f(x) có đạo hàm trên (a; b). Phát biểu nào sau đây sai?
Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}}\), khẳng định nào sau đây Đúng?
Cho \({\log _8}\left| x \right| + {\log _4}{y^2} = 5\) và \({\log _8}\left| y \right| + {\log _4}{x^2} = 7\). Tìm giá trị của biểu thức \(P = \left| x \right| - \left| y \right|\).
Trong tất cả các hình thang cân có cạnh bên bằng 2 và cạnh đáy nhỏ bằng 4, tính chu vi P của hình thang có diện tích lớn nhất.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; G là trọng tâm của tam giác BCD. Khi đó, giao điểm của đường thẳng MG và mp là: