Câu hỏi Đáp án 2 năm trước 39

Trong tất cả các hình thang cân có cạnh bên bằng 2 và cạnh đáy nhỏ bằng 4, tính chu vi P của hình thang có diện tích lớn nhất.

A. P = 12

B. P = 8

C. \(P = 10 + 2\sqrt 3 \)

Đáp án chính xác ✅

D. \(5 + \sqrt 3 \)

Lời giải của giáo viên

verified HocOn247.com

Gọi H là chân đường cao kẻ từ A đến CD ta có: \({S_{ABCD}} = \frac{{\left( {AB + CD} \right).AH}}{2}\)

Đặt AH  =x (0 < x < 2)

Khi đó áp dụng định lý Pi-ta-go ta có: \(DH = \sqrt {A{D^2} - A{H^2}}  = \sqrt {4 - {x^2}} \)

Ta có: \(DH = CK = \sqrt {4 - {x^2}}  \Rightarrow CD = 2\sqrt {4 - {x^2}}  + 4\)

\( \Rightarrow {S_{ABCD}} = \frac{{\left( {AB + CD} \right).AH}}{2} = \frac{{\left( {4 + 2\sqrt {4 - {x^2}}  + 4} \right).x}}{2} = \frac{{\left( {8 + 2\sqrt {4 - {x^2}} } \right)x}}{2}\)

Xét hàm số \(f\left( x \right) = \left( {8 + 2\sqrt {4 - {x^2}} } \right)x = 8x + 2x\sqrt {4 - {x^2}} \) (0 < x < 2)

Ta có: \(f'\left( x \right) = 8 + 2\sqrt {4 - {x^2}}  - \frac{{4{x^2}}}{{2\sqrt {4 - {x^2}} }} = 8 + \frac{{2\left( {4 - {x^2}} \right) - 2{x^2}}}{{\sqrt {4 - {x^2}} }} = 8 + \frac{{4\left( {2 - {x^2}} \right)}}{{\sqrt {4 - {x^2}} }}\)

\(\begin{array}{l}
 \Rightarrow f'\left( x \right) = 0 \Leftrightarrow 8 + \frac{{4\left( {2 - {x^2}} \right)}}{{\sqrt {4 - {x^2}} }} = 0 \Leftrightarrow 8\sqrt {4 - {x^2}}  + 4\left( {2 - {x^2}} \right) = 0\\
 \Leftrightarrow 2\sqrt {4 - {x^2}}  = {x^2} - 2 \Leftrightarrow \left\{ \begin{array}{l}
{x^2} - 2 \ge 0\\
4\left( {4 - {x^2}} \right) = {x^4} - 4{x^2} + 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x^2} \ge 2\\
{x^4} = 12
\end{array} \right. \Leftrightarrow {x^2} = 2\sqrt 3 \,\,\left( {tm} \right)\\
 \Rightarrow {S_{\max }} \Leftrightarrow {x^2} = 2\sqrt 3  \Rightarrow CD = 2\sqrt {4 - 2\sqrt 3 }  + 4 = 2\left( {\sqrt 3  - 1} \right) + 4 = 2\sqrt 3  + 2
\end{array}\)

Khi đó chu vi của hình thang là:

\(P = AB + 2.AD + CD = 4 + 2.2 + 2\sqrt 3  + 2 = 10 + 2\sqrt 3 \)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB// CD), BC = 2a,AB = AD = DC = a với a > 0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của ACBD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x > 0; M khác OD. Mặt phẳng \(\left( \alpha  \right)\) đi qua M và song song với hai đường thẳng SDAC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Mệnh đề nào sau đây Sai?

Xem lời giải » 2 năm trước 42
Câu 3: Trắc nghiệm

Đồ thị hàm số sau đây là đồ thị hàm số nào?

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức  \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R = 6cm. I, K là 2 điểm trên đoạn OA sao cho OI = IK = KA . Các mặt phẳng \(\left( \alpha  \right),\left( \beta  \right)\) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính \({r_1},{r_2}\). Tính tỉ số \(\frac{{{r_1}}}{{{r_2}}}\)

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}}\), khẳng định nào sau đây Đúng?

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Tìm tập xác định D của hàm số \(y = {\left( {5 + 4x - {x^2}} \right)^{\sqrt {2019} }}\)

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = x,AD = 1 . Biết rằng góc giữa đường thẳng A'C  và mặt phẳng \(\left( {ABB'A'} \right)\)  bằng 30°. Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp ABCD.A'B'C'D'

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Tìm tất cả các giá trị của tham số m để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng (0; 1)

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Cho hàm số y = f(x) có đạo hàm trên (a; b). Phát biểu nào sau đây sai?

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho \({\log _8}\left| x \right| + {\log _4}{y^2} = 5\) và \({\log _8}\left| y \right| + {\log _4}{x^2} = 7\). Tìm giá trị của biểu thức \(P = \left| x \right| - \left| y \right|\).

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; G là trọng tâm của tam giác BCD. Khi đó, giao điểm của đường thẳng MG và mp  là:

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \({\left( {\sqrt[3]{3} + \sqrt[5]{5}} \right)^{2019}}\)

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »