Lời giải của giáo viên
Điều kiện: x > 0
Đặt \(t = {\log _3}x \Rightarrow x \in \left( {0;1} \right) \Rightarrow t \in \left( { - \infty ;0} \right)\)
Khi đó ta có phương trình:
\(\begin{array}{l}
\log _3^23x + {\log _3}x + m - 1 = 0 \Leftrightarrow {\left( {{{\log }_3}3 + {{\log }_3}x} \right)^2} + {\log _3}x - 1 = - m\\
\Leftrightarrow \log _3^2x + 3{\log _3}x = - m \Leftrightarrow {t^2} + 3t = - m\,\,\left( * \right)
\end{array}\)
Phương trình đã cho có hai nghiệm phân biệt thuộc (0; 1) <=> phương trình ẩn t có hai nghiệm phân biệt thuộc \(\left( { - \infty ;3} \right)\)
Xét hàm số: \(y = {t^2} + 3t\) trên \(\left( { - \infty ;3} \right)\) ta có: \(y' = 2t + 3\)
\( \Rightarrow y' = 0 \Leftrightarrow 2t + 3 = 0 \Leftrightarrow t = - \frac{3}{2}\)
Ta có BBT:
Để phương trình (*) có 2 nghiệm phân biệt thuộc \(\left( { - \infty ;0} \right)\) thì đường thẳng y = m cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt thuộc \(\left( { - \infty ;0} \right) \Rightarrow - \frac{9}{4} < - m < 0 \Leftrightarrow 0 < m < \frac{9}{4}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB// CD), BC = 2a,AB = AD = DC = a với a > 0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x > 0; M khác O và D. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R = 6cm. I, K là 2 điểm trên đoạn OA sao cho OI = IK = KA . Các mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính \({r_1},{r_2}\). Tính tỉ số \(\frac{{{r_1}}}{{{r_2}}}\)
Tìm tập xác định D của hàm số \(y = {\left( {5 + 4x - {x^2}} \right)^{\sqrt {2019} }}\)
Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?
Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}}\), khẳng định nào sau đây Đúng?
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = x,AD = 1 . Biết rằng góc giữa đường thẳng A'C và mặt phẳng \(\left( {ABB'A'} \right)\) bằng 30°. Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp ABCD.A'B'C'D'
Cho hàm số y = f(x) có đạo hàm trên (a; b). Phát biểu nào sau đây sai?
Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; G là trọng tâm của tam giác BCD. Khi đó, giao điểm của đường thẳng MG và mp là:
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \({\left( {\sqrt[3]{3} + \sqrt[5]{5}} \right)^{2019}}\)
Trong tất cả các hình thang cân có cạnh bên bằng 2 và cạnh đáy nhỏ bằng 4, tính chu vi P của hình thang có diện tích lớn nhất.