Câu hỏi Đáp án 2 năm trước 45

Cho a là số thực dương, \(a \ne 1\). Biết bất phương trình \({\log _a}x \le 3x - 3\) nghiệm đúng với mọi \(x > 0\). Số a thuộc tập hợp nào sau đây ?

A. \(\left( {5; + \infty } \right)\)  

B. \(\left( {2;3} \right)\)   

C. \(\left( {1;2} \right)\) 

Đáp án chính xác ✅

D. \(\left( {3;5} \right]\) 

Lời giải của giáo viên

verified HocOn247.com

Ta có \({\log _a}x \le 3x - 3 \Leftrightarrow {\log _a}x - 3x + 3 \le 0\)

Đặt \(f\left( x \right) = {\log _a}x - 3x + 3\) ta có \(\left\{ \begin{array}{l}f\left( x \right) \le 0\,\,\forall x > 0\\f\left( 1 \right) = 0\end{array} \right. \Rightarrow \mathop {\max }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 0 = f\left( 1 \right)\).

\( \Rightarrow x = 1\) là điểm cực đại của hàm số \(y = f\left( x \right)\)\( \Rightarrow f'\left( 1 \right) = 0\).

Ta có \(f'\left( x \right) = \dfrac{1}{{x\ln a}} - 3 \Rightarrow f'\left( 1 \right) = \dfrac{1}{{\ln a}} - 3 = 0 \Leftrightarrow \ln a = \dfrac{1}{3} \Leftrightarrow a = {e^{\dfrac{1}{3}}} \approx 1,4 \in \left( {1;2} \right)\).

Chọn C. 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hai phương trình \({x^2} + 7x + 3 - \ln \left( {x + 4} \right) = 0\,\,\,\left( 1 \right)\) và \({x^2} - 11x + 21 - \ln \left( {6 - x} \right) = 0\,\,\left( 2 \right)\). Đặt T là tổng các nghiệm phân biệt của hai phương trình đã cho, ta có

Xem lời giải » 2 năm trước 56
Câu 2: Trắc nghiệm

Tìm các giá trị của tham số m \(\left( {m \in R} \right)\) để phương trình \({x^2} + \dfrac{1}{{{x^2}}} - \left( {{m^2} + m + 2} \right)\left( {x + \dfrac{1}{x}} \right) + {m^3} + 2m + 2 = 0\) có nghiệm thực:

Xem lời giải » 2 năm trước 49
Câu 3: Trắc nghiệm

Trong mặt phẳng \(Oxy\) cho tam giác \(ABC\) có đỉnh \(A\left( {5;\;5} \right),\) trực tâm \(H\left( { - 1;\;13} \right),\) đường tròn ngoại tiếp tam giác \(ABC\) có phương trình \({x^2} + {y^2} = 50.\) Biết tọa độ đỉnh \(C\) là \(C\left( {a;\;b} \right)\) với \(a < 0.\) Tổng \(a + b\) bằng:

Xem lời giải » 2 năm trước 49
Câu 4: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của m để hàm số \(y = \dfrac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {2; + \infty } \right)?\)

Xem lời giải » 2 năm trước 48
Câu 5: Trắc nghiệm

Cho phương trình: \(3{\log _{27}}\left[ {2{x^2} - \left( {m + 3} \right)x + 1 - m} \right] + {\log _{\frac{1}{3}}}\left( {{x^2} - x + 1 - 3m} \right) = 0\). Số các giá trị nguyên của m sao cho phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| < 15\) là:

Xem lời giải » 2 năm trước 47
Câu 6: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của m trên miền \(\left[ { - 10;10} \right]\) để hàm số \(y = {x^4} - 2\left( {2m + 1} \right){x^2} + 7\) có ba điểm cực trị?

Xem lời giải » 2 năm trước 46
Câu 7: Trắc nghiệm

Từ các chữ số \(1;\;2;\;3;\;4;\;5;\;6;\;7;\;8;\;9\) có thể lập được tất cả bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau? 

Xem lời giải » 2 năm trước 45
Câu 8: Trắc nghiệm

Cho khối lăng trụ đều \(ABC.A'B'C'\) có cạnh đáy bằng \(a.\) Khoảng cách từ điểm \(A'\) đến mặt phẳng \(\left( {AB'C'} \right)\) bằng \(\dfrac{{2a\sqrt 3 }}{{\sqrt {19} }}.\) Thể tích khối lăng trụ đã cho là:

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình \(4f\left( x \right) - 5 = 0\) là:

Xem lời giải » 2 năm trước 44
Câu 10: Trắc nghiệm

Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?

Xem lời giải » 2 năm trước 44
Câu 11: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(R.\) Biết \(f\left( 0 \right) = 0\) và đồ thị hàm số \(y = f'\left( x \right)\) được cho như hình vẽ bên. Phương trình \(\left| {f\left( {\left| x \right|} \right)} \right| = m,\) với \(m\) là tham số có nhiều nhất bao nhiêu nghiệm?

Xem lời giải » 2 năm trước 44
Câu 12: Trắc nghiệm

Cho các số thực a,b thay đổi, thỏa mãn \(a > \dfrac{1}{3},\,\,b > 1\). Khi biểu thức \(P = {\log _{3a}}b + {\log _b}\left( {{a^4} - 9{a^2} + 81} \right)\) đạt giá trị nhỏ nhất thì tổng \(a + b\) bằng: 

Xem lời giải » 2 năm trước 44
Câu 13: Trắc nghiệm

Biết rằng tập nghiệm của bất phương trình \(\sqrt {2x + 4}  - 2\sqrt {2 - x}  \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\) là \(\left[ {a;b} \right]\). Khi đó giá trị của biểu thức \(P = 3a - 2b\) bằng:

Xem lời giải » 2 năm trước 44
Câu 14: Trắc nghiệm

Cho khối hai mươi mặt đều \(\left( H \right).\) Biết mỗi mặt của nó là một đa giác đều \(p\) cạnh, mỗi đỉnh của nó là đỉnh chung của đúng \(q\) mặt. Ta có \(\left( {p;\;q} \right)\) nhận giá trị nào sau đây?

Xem lời giải » 2 năm trước 43
Câu 15: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(R\)  và \(f'\left( x \right) = \left( {x - 1} \right){\left( {x - 2} \right)^2}\left( {x + 3} \right).\)  Số điểm cực trị của hàm số đã cho là:

Xem lời giải » 2 năm trước 43

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »