Cho hai phương trình \({x^2} + 7x + 3 - \ln \left( {x + 4} \right) = 0\,\,\,\left( 1 \right)\) và \({x^2} - 11x + 21 - \ln \left( {6 - x} \right) = 0\,\,\left( 2 \right)\). Đặt T là tổng các nghiệm phân biệt của hai phương trình đã cho, ta có
A. \(T = 2\)
B. \(T = 4\)
C. \(T = 8\)
D. \(T = 6\)
Lời giải của giáo viên
Xét phương trình \({x^2} + 7x + 3 - \ln \left( {x + 4} \right) = 0\,\,\,\left( 1 \right)\)
Đặt \(t = x + 4 \Rightarrow \) Phương trình (1) trở thành:
\({\left( {t - 4} \right)^2} + 7\left( {t - 4} \right) + 3 - \ln t = 0 \Leftrightarrow {t^2} - t - 9 = \ln t\,\,\left( * \right)\)
Xét phương trình \({x^2} - 11x + 21 - \ln \left( {6 - x} \right) = 0\,\,\left( 2 \right)\)
Đặt \(t = 6 - x \Rightarrow \) Phương trình (2) trở thành:
\({\left( {6 - t} \right)^2} - 11\left( {6 - t} \right) + 21 = \ln t \Leftrightarrow {t^2} - t - 9 = \ln t\,\,\left( {**} \right)\)
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = {t^2} - t - 9\) và \(y = \ln t\) .
Dựa vào đồ thị hàm số ta thấy phương trình \({t^2} - t - 9 = \ln t\) có 2 nghiệm phân biệt, giả sử \({t_1},\,\,{t_2}\).
Khi đó (*) có 2 nghiệm phân biệt \({x_1} = {t_1} - 4,\,\,{x_2} = {t_2} - 4\).
(**) có 2 nghiệm phân biệt \({x_3} = 6 - {t_1},\,\,{x_4} = 6 - {t_2}\).
Giả sử \({x_1} = {x_3} \Leftrightarrow {t_1} - 4 = 6 - {t_1} \Leftrightarrow {t_1} = 5\).
Khi \(t = 5\) ta có \({5^2} - 5 - 9 = \ln 5\) (vô lí) \( \Rightarrow {x_1} \ne {x_3}\). Chứng minh hoàn toàn tương tự ta có \({x_2} \ne {x_4}\).
Vậy phương trình ban đầu có 4 nghiệm phân biệt \({x_{1,2,3,4}}\) và \(\sum x = {t_1} - 4 + {t_2} - 4 + 6 - {t_1} + 6 - {t_2} = 4\).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm các giá trị của tham số m \(\left( {m \in R} \right)\) để phương trình \({x^2} + \dfrac{1}{{{x^2}}} - \left( {{m^2} + m + 2} \right)\left( {x + \dfrac{1}{x}} \right) + {m^3} + 2m + 2 = 0\) có nghiệm thực:
Trong mặt phẳng \(Oxy\) cho tam giác \(ABC\) có đỉnh \(A\left( {5;\;5} \right),\) trực tâm \(H\left( { - 1;\;13} \right),\) đường tròn ngoại tiếp tam giác \(ABC\) có phương trình \({x^2} + {y^2} = 50.\) Biết tọa độ đỉnh \(C\) là \(C\left( {a;\;b} \right)\) với \(a < 0.\) Tổng \(a + b\) bằng:
Có tất cả bao nhiêu giá trị nguyên của m để hàm số \(y = \dfrac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {2; + \infty } \right)?\)
Cho phương trình: \(3{\log _{27}}\left[ {2{x^2} - \left( {m + 3} \right)x + 1 - m} \right] + {\log _{\frac{1}{3}}}\left( {{x^2} - x + 1 - 3m} \right) = 0\). Số các giá trị nguyên của m sao cho phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| < 15\) là:
Có tất cả bao nhiêu giá trị nguyên của m trên miền \(\left[ { - 10;10} \right]\) để hàm số \(y = {x^4} - 2\left( {2m + 1} \right){x^2} + 7\) có ba điểm cực trị?
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(R.\) Biết \(f\left( 0 \right) = 0\) và đồ thị hàm số \(y = f'\left( x \right)\) được cho như hình vẽ bên. Phương trình \(\left| {f\left( {\left| x \right|} \right)} \right| = m,\) với \(m\) là tham số có nhiều nhất bao nhiêu nghiệm?
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình \(4f\left( x \right) - 5 = 0\) là:
Từ các chữ số \(1;\;2;\;3;\;4;\;5;\;6;\;7;\;8;\;9\) có thể lập được tất cả bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau?
Cho các số thực a,b thay đổi, thỏa mãn \(a > \dfrac{1}{3},\,\,b > 1\). Khi biểu thức \(P = {\log _{3a}}b + {\log _b}\left( {{a^4} - 9{a^2} + 81} \right)\) đạt giá trị nhỏ nhất thì tổng \(a + b\) bằng:
Cho a là số thực dương, \(a \ne 1\). Biết bất phương trình \({\log _a}x \le 3x - 3\) nghiệm đúng với mọi \(x > 0\). Số a thuộc tập hợp nào sau đây ?
Cho khối lăng trụ đều \(ABC.A'B'C'\) có cạnh đáy bằng \(a.\) Khoảng cách từ điểm \(A'\) đến mặt phẳng \(\left( {AB'C'} \right)\) bằng \(\dfrac{{2a\sqrt 3 }}{{\sqrt {19} }}.\) Thể tích khối lăng trụ đã cho là:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?
Biết rằng tập nghiệm của bất phương trình \(\sqrt {2x + 4} - 2\sqrt {2 - x} \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\) là \(\left[ {a;b} \right]\). Khi đó giá trị của biểu thức \(P = 3a - 2b\) bằng:
Số nghiệm của phương trình \(3{\log _3}\left( {2x - 1} \right) - {\log _{\frac{1}{3}}}{\left( {x - 5} \right)^3} = 3\) là:
Cho khối hai mươi mặt đều \(\left( H \right).\) Biết mỗi mặt của nó là một đa giác đều \(p\) cạnh, mỗi đỉnh của nó là đỉnh chung của đúng \(q\) mặt. Ta có \(\left( {p;\;q} \right)\) nhận giá trị nào sau đây?