Lời giải của giáo viên
Ta có \({{\log }_{5}}\left( \frac{4a+2b+5}{a+b} \right)=a+3b-4\Leftrightarrow {{\log }_{5}}\left( 4a+2b+5 \right)-{{\log }_{5}}\left( a+b \right)=a+3b-4\)
\(\Leftrightarrow {{\log }_{5}}\left( 4a+2b+5 \right)+\left( 4a+2b+5 \right)={{\log }_{5}}\left( a+b \right)+5a+5b+1\)
\(\Leftrightarrow {{\log }_{5}}\left( 4a+2b+5 \right)+\left( 4a+2b+5 \right)={{\log }_{5}}\left( 5a+5b \right)+\left( 5a+5b \right)\) \(\left( 1 \right).\)
Xét hàm số \(f\left( t \right)=t+{{\log }_{5}}t\) với \(t>0.\)
Ta có \(f'\left( t \right)=1+\frac{1}{t\ln 5}>0,\forall t>0.\) Do đó \(f\left( t \right)\) đồng biến trên \(\left( 0;+\infty \right).\)
Khi đó \(\left( 1 \right)\Leftrightarrow 4a+2b+5=5a+5b\Leftrightarrow a=5-3b\).
Thay vào \(T={{a}^{2}}+{{b}^{2}}=10{{b}^{2}}-30b+25=10{{\left( b-\frac{3}{2} \right)}^{2}}+\frac{5}{2}\ge \frac{5}{2}.\)
Đẳng thức xảy ra khi và chỉ khi \(\left\{ \begin{array}{l} b = \frac{3}{2}\\ a = \frac{1}{2} \end{array} \right..\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)={{\log }_{2}}x,\) với \(x>0.\) Tính giá trị biểu thức \(P=f\left( \frac{2}{x} \right)+f\left( x \right).\)
Trong không gian với hệ tọa độ Oxyz, mặt cầu tâm \(I\left( 2;1;-3 \right)\) và tiếp xúc với trục Oy có phương trình là:
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) là
Một người gửi tiết kiệm với lãi suất 8,4%/năm và lãi hàng năm được nhập vào vốn. Hỏi sau bao nhiêu năm người đó thu được gấp đôi số tiền ban đầu?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ bên dưới.
Mệnh đề nào dưới đây đúng?
Cho hình lập phương ABCD.MNPQ cạnh bằng A. Tính khoảng cách từ điểm A đến mặt phẳng \(\left( CNQ \right).\)
Cho hình hộp đứng ABCD.A'B'C'D' có AA'=2, đáy ABCD là hình thoi với ABC là tam giác đều cạnh 4. Gọi M,N,P lần lượt là trung điểm của B'C',C'D',DD' và Q thuộc cạnh BC sao cho QC=3QB. Tính thể tích tứ diện MNPQ.
Tìm m để đồ thị hàm số \(y={{x}^{4}}-2m{{x}^{2}}+{{m}^{2}}-1\) cắt trục hoành tại 4 điểm phân biệt.
Có 60 tấm thẻ đánh số từ 1 đến 60. Rút ngẫu nhiên 3 thẻ. Tính xác suất để tổng các số ghi trên 3 thẻ chia hết cho 3.
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình sau:
Số nghiệm của phương trình \(f\left( x \right)=-3\) là
Tập xác định của hàm số \(y={{\log }_{3}}\left( x+1 \right)\) là
Cho hình nón có chiều cao bằng 3 (cm), góc giữa trục và đường sinh bằng \({{60}^{0}}.\) Thể tích khối nón bằng
Tính đạo hàm của hàm số \(y={{2021}^{x}}\) ta được đáp án đúng là?
Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)=x{{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{4}},\forall x\in \mathbb{R}.\) Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là