Cho bất phương trình \(\ln \left( {{x}^{3}}-2{{x}^{2}}+m \right)\ge \ln \left( {{x}^{2}}+5 \right).\) Có bao nhiêu giá trị nguyên của tham số \(m\in \left[ -20;20 \right]\) để bất phương trình đúng nghiệm với mọi \(x\) trên đoạn \(\left[ 0;3 \right].\)
A. 10
B. 12
C. 41
D. 11
Lời giải của giáo viên
Theo yêu cầu bài toán ta có:
\(\ln \left( {{x}^{3}}-2{{x}^{2}}+m \right)\ge \ln \left( {{x}^{2}}+5 \right),\forall x\in \left[ 0;3 \right]\Leftrightarrow {{x}^{3}}-2{{x}^{2}}+m\ge {{x}^{2}}+5,\forall x\in \left[ 0;3 \right]\)
\(\Leftrightarrow m\ge -{{x}^{3}}+3{{x}^{2}}+5,\forall x\in \left[ 0;3 \right]\)
\(\Leftrightarrow m\ge \underset{\left[ 0;3 \right]}{\mathop{\max }}\,\left( -{{x}^{3}}+3{{x}^{2}}+5 \right)\)
Xét hàm số \(f\left( x \right) = - {x^3} + 3{x^2} + 5,\forall x \in \left[ {0;3} \right] \Rightarrow f'\left( x \right) = - 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right..\)
Ta có: \(f\left( 0 \right)=5,f\left( 2 \right)=9,f\left( 3 \right)=5\Rightarrow \underset{\left[ 0;3 \right]}{\mathop{\max }}\,f\left( x \right)=9.\)
Do đó ta được \(m\ge 9,\) kết hợp với điều kiện \(m\in \left[ -20;20 \right]\) nên \(m\in \left\{ 9;10;11;...;20 \right\}\) do đó có 12 giá trị nguyên của \(m\) thỏa mãn bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Tập nghiệm của bất phương trình \({{6.9}^{x}}-{{12.6}^{x}}+{{6.4}^{x}}\le 0\) có dạng \(S=\left[ a;b \right].\) Giá trị của biểu thức \({{a}^{2}}+{{b}^{2}}\) bằng
Phương trình tiệm cận ngang của đồ thị hàm số \(y=\frac{4-3x}{4x+5}\) là
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,SA\) vuông góc với mặt đáy và \(SA=a\sqrt{2}.\) Góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( ABCD \right)\) bằng
Cho khối nón có bán kính đường tròn đáy bằng \(R=3a,\) đường sinh \(l=5a,\) thể tích của khối nón bằng bao nhiêu?
Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc với nhau. Biết \(AB=3a;AC=2a\) và \(AD=a. \) Tính thể tích của khối tứ diện đã cho?
Cho hàm số \(f\left( x \right),\) bảng xét dấu của \(f'\left( x \right)\) như sau:
Hàm số \(y=f\left( 1-2x \right)\) nghịch biến trên khoảng nào dưới đây?
Cho lăng trụ tam giác \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,AB=a\sqrt{3},AC=a. \) Điểm \(A'\) cách đều ba điểm \(A,B,C. \) Góc giữa đường thẳng \(AB'\) và mặt phẳng \(\left( ABC \right)\) bằng \({{60}^{0}}.\) Khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng
Cho hàm số \(y=\frac{x+m}{x-3}(m\) là tham số) thỏa mãn \(\underset{\left[ -1;2 \right]}{\mathop{\min }}\,y=-2.\) Mệnh đề nào dưới đây đúng?
Gọi \(M,m\) lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số \(y=-{{x}^{3}}+6{{x}^{2}}-9x+5\) trên đoạn \(\left[ -1;2 \right]\). Khi đó tổng \(M+m\) bằng
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A,\) cạnh \(SA\) vuông góc với mặt đáy \(ABC. \) Biết \(SA=2a,BC=2a\sqrt{2}.\) Bán kính \(R\) của mặt dầu ngoại tiếp hình chóp \(S.ABC\) bằng
Cho hàm số \(f\left( x \right)={{x}^{5}}+3{{x}^{3}}-4m.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( \sqrt[3]{f\left( x \right)+m} \right)={{x}^{3}}-m\) có nghiệm thuộc đoạn \(\left[ 1;2 \right]?\)
Cho hàm số \(y=-{{x}^{3}}-3\left( m+1 \right){{x}^{2}}+3\left( 2m-1 \right)x+2020.\) Có bao nhiêu giá trị nguyên \(m\) để hàm số nghịch biến trên \(\left( -\infty ;+\infty \right)?\)
Đường thẳng \(y=x+1\) cắt đồ thị hàm số \(y=\frac{x-1}{x-2}\) tại hai điểm phân biệt \(A,B. \) Khi đó độ dài \(AB\) bằng
Gọi \({{x}_{1}},{{x}_{2}}\left( {{x}_{1}}<{{x}_{2}} \right)\) là hai nghiệm của phương trình \({{3}^{2x-1}}-{{4.3}^{x}}+9=0.\) Giá trị của biểu thức \(P={{x}_{2}}-2{{x}_{1}}\) bằng