Cho bình nước hình trụ có bán kính đáy \({{r}_{1}}\) và chiều cao \({{h}_{1}}\) (có bỏ qua chiều dày đáy và thành bình), hai quả nặng A và B dạng hình cầu đặc có bán kính lần lượt là r và 2r. Biết rằng \({{h}_{1}}>2{{r}_{1}},{{r}_{1}}>2r\) và bình đang chứa một lượng nước. Khi ta bỏ quả cầu A và bình thì thấy thể tích nước tràn ra là 2 lít. Khi ta nhấc quả cầu A ra và thả quả cầu B vào bình thì thể tích nước tràn ra là 7 lít. Giá trị bán kính r bằng
A. \(\sqrt[3]{\frac{3}{4\pi }}\left( dm \right)\)
B. \(\sqrt[3]{\frac{3}{8\pi }}\left( dm \right)\)
C. \(\sqrt[3]{\frac{3}{2\pi }}\left( dm \right)\)
D. \(\sqrt[3]{2\pi }\left( dm \right)\)
Lời giải của giáo viên
Gọi thể tích bình là V và thể tích trong bình là \({{V}_{1}}\), thể tích quả cầu A là \({{V}_{0}}=\frac{4\pi }{3}{{r}^{3}}\), thể tích quả cầu B là \(\frac{4\pi }{3}{{\left( 2r \right)}^{3}}=8.\frac{4\pi }{3}.{{r}^{3}}=8{{V}_{0}}\)
Khi ta thả quả cầu A vào bình nước và nước bị tràn ra 2 lít, suy ra: \({{V}_{1}}+{{V}_{0}}=V+2\)\(\left( 1 \right)\)
Khi ta thả quả cầu B vào thì: \(\left( V-2 \right)+8{{V}_{0}}=V+7\)\(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\)suy ra: \({{V}_{0}}=1\,l\acute{i}t=\frac{4\pi }{3}{{r}^{3}}=1\left( d{{m}^{3}} \right)\Rightarrow r=\sqrt[3]{\frac{3}{4\pi }}\left( dm \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Điểm \(M\left( a,b \right)\left( a>0 \right)\) thuộc \(\left( C \right)\) sao cho khoảng cách từ M tới tiệm cận đứng của \(\left( C \right)\) bằng khoảng cách M tới tiệm cận ngang của \(\left( C \right)\). Mệnh đề nào dưới đây đúng?
Cho hàm số \(y=f(x)\) có đạo hàm tại \(x=1\) và \({f}'(1)\ne 0\). Gọi \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) lần lượt là hai tiếp tuyến của đồ thị hàm số \(y=f(x)\) và \(y=g(x)=x.f(2\text{x}-1)\) tại điểm có hoành độ \(x=1\). Biết rằng hai đường thẳng \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) vuông góc với nhau. Khẳng định nào sau đây đúng?
Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng
Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là
Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{align} & 1\text{x}=2+2t \\ & y=-1-3t \\ & z=1 \\ \end{align} \right.(t\in \mathbb{R})\). Xét đường thẳng \(\Delta :\frac{x-1}{1}=\frac{y-3}{m}=\frac{z+2}{-2}\), với m là tham số thực khác 0. Tìm tất cả các giá trị thực của m để đường thẳng Δ vuông góc với đường thẳng d.
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {{x^2} - 2mx + 3\,\,\,\left( {x \le 1} \right)}\\ {nx + 10\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x > 1} \right)} \end{array}} \right.\), trong đó m,n là hai tham số thực. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left( x \right)\) có đúng hai điểm cực trị?
Gọi F(x) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right)={{x}^{2}}{{e}^{ax}}\left( a\ne 0 \right),\) sao cho \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1.\) Chọn mệnh đề đúng trong các mệnh đề sau:
Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right)\). Phương trình tham số của \(\Delta \) là
Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là