Cho các bất phương trình \(\log _5^{}( - {x^2} + 4x + m) - {\log _5}({x^2} + 1) < 1\) (1) và \(\sqrt {4 - x} + \sqrt {x - 1} \ge 0\) (2). Tổng tất cả các giá trị nguyên dương của m sao cho mọi nghiệm của bất phương trình (2) đều là nghiệm của bất phương trình (1) là
A. 13
B. 21
C. 28
D. 11
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có cạnh SA vuông góc với đáy, là tam giác ABC vuông tại A, biết \(AB = 3a,AC = 4a,SA = 5a\). Tìm bán kính của mặt cầu ngoại tiếp hình chóp S.ABC.
Với \(a,b\) là hai số thực dương tuỳ ý, \(\ln \left( {{{\rm{e}}^2}.{a^7}{b^5}} \right)\) bằng
Hàm số \(f\left( x \right)\) có bảng biến thiên sau
Hàm số đạt cực tiểu tại
Biết \(F(x)\) là một nguyên hàm của hàm \(f\left( x \right) = \cos 3x\) và \(F\left( {\frac{\pi }{2}} \right) = \frac{2}{3}\). Tính \(F\left( {\frac{\pi }{9}} \right)\).
Cho hàm số \(y = f(x)\) có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Giá trị \(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} - 1}}{{x + 1}}\) bằng
Thể tích khối chóp có diện tích đáy \({a^2}\sqrt 2 \) và chiều cao \(3a\) là
Biết thể tích khối lập phương bằng \(16\sqrt 2 {a^3}\), vậy cạnh của khối lập phương bằng bao nhiêu?
Cho hình chóp S.ABCD với ABCD là hình vuông cạnh \(2a\), SA vuông góc với mặt (ABCD) và \(SA = a\sqrt 3 \). Khoảng cách giữa hai đường thẳng SD và AB bằng
Tập hợp các giá trị thực của m để hàm số \(y = \frac{{3x - 1 - 2m}}{{x - m}}\) nghịch biến trên khoảng \(\left( {5\,;\, + \infty } \right)\) là
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và \({u_4} = 54\). Giá trị \({u_{2019}}\) bằng
Tìm họ nguyên hàm của hàm số \(f(x) = 3x - \sin x\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình vẽ dưới đây.
Số các giá trị nguyên của tham số m không vượt quá 5 để phương trình \(f\left( {{\pi ^x}} \right) - \frac{{{m^2} - 1}}{8} = 0\) có hai nghiệm phân biệt là