Cho các phát biểu sau
(1) Đơn giản biểu thức \(M=\left( {{a}^{\frac{1}{4}}}-{{b}^{\frac{1}{4}}} \right)\left( {{a}^{\frac{1}{4}}}+{{b}^{\frac{1}{4}}} \right)\left( {{a}^{\frac{1}{2}}}+{{b}^{\frac{1}{2}}} \right)\) ta được \(M=a-b.\)
(2) Tập xác định \(D\) của hàm số \(y={{\log }_{2}}\left( {{\ln }^{2}}x-1 \right)\) là \(D=\left( e;+\infty \right).\)
(3) Đạo hàm của hàm số \(y={{\log }_{2}}\ln x\) là \(y'=\frac{1}{x\ln x.\ln 2}\)
(4) Hàm số \(y=10{{\log }_{a}}\left( x-1 \right)\) có đạo hàm tại mọi điểm xác định
Số các phát biểu đúng là
A. 1
B. 3
C. 2
D. 4
Lời giải của giáo viên
Ta có: \(M=\left( {{a}^{\frac{1}{4}}}-{{b}^{\frac{1}{4}}} \right)\left( {{a}^{\frac{1}{4}}}+{{b}^{\frac{1}{4}}} \right)\left( {{a}^{\frac{1}{2}}}+{{b}^{\frac{1}{2}}} \right)=\left( {{a}^{\frac{1}{2}}}-{{b}^{\frac{1}{2}}} \right)\left( {{a}^{\frac{1}{2}}}+{{b}^{\frac{1}{2}}} \right)=a-b\Rightarrow \left( 1 \right)\) đúng.
Hàm số \(y={{\log }_{2}}\left( {{\ln }^{2}}x-1 \right)\) xác định khi
\(\left\{ \begin{array}{l} {\ln ^2}x - 1 > 0\\ x > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\ln ^2}x > 1\\ x > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} \ln x > 1\\ \ln x < - 1 \end{array} \right.\\ x > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x > e\\ x < \frac{1}{e} \end{array} \right.\\ x > 0 \end{array} \right. \Leftrightarrow x \in \left( {0;\frac{1}{e}} \right) \cup \left( {e; + \infty } \right).\)
Vậy (2) là phát biểu sai.
Hàm số \(y={{\log }_{2}}\ln x\) là \(y'=\left( {{\log }_{2}}\ln x \right)'=\frac{\left( \ln x \right)'}{\ln x.\ln 2}=\frac{1}{x\ln x.\ln 2}.\) Vậy (3) là phát biểu đúng.
Hàm số \(y=10{{\log }_{a}}\left( x-1 \right)\) xác định khi \(\left\{ \begin{array}{l} 0 < a \ne 1\\ x > 1 \end{array} \right..\) Vậy (4) là phát biểu sai.
Kết luận: Vậy số các phát biểu đúng là 2.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có dấu của \(f'\left( x \right)\) như sau
Hàm số \(y=f\left( 2-x \right)\) có bao nhiêu điểm cực trị?
Cho hình lăng trụ \(ABC.A'B'C'\) có chiều cao bằng 8 và đáy là tam giác đều cạnh bằng 6. Gọi \(M,N,P\) lần lượt là tâm của các mặt bên \(ABB'A',ACC'A'\) và \(BCC'B'.\) Thể tích của khối đa diện lồi có các đỉnh là các điểm \(A,B,C,M,N,P\) bằng:
Cho tam giác \(ABC\) có \(BC=a,CA=b,AB=c.\) Nếu \(a,b,c\) theo thứ tự lập thành một cấp số nhân thì
Cho lăng trụ đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a.\) Gọi \(\alpha \) là góc giữa mặt phẳng \(\left( A'BC \right)\) và mặt phẳng \(\left( ABC \right).\) Tính \(\tan \alpha .\)
Trong không gian với hệ trục tọa độ \(Oxyz\), để hai vecto \(\overrightarrow{a}=(m;2;3)\) và \(\overrightarrow{b}=(1;n;2)\) cùng phương thì \(2m+3n\) bằng
Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)=\cos x\sqrt{\sin x+1}.\)
Tổng các giá trị nguyên âm của \(m\) để hàm số \(y={{x}^{3}}+mx-\frac{1}{5{{x}^{5}}}\) đồng biến trên khoảng \(\left( 0;+\infty \right)\)?
Một cấp số cộng có \({{u}_{2}}=5\) và \({{u}_{3}}=9.\) Khẳng định nào sau đây đúng?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SD=\frac{a\sqrt{17}}{2},\) hình chiếu vuông góc \(H\) của \(S\) trên \(\left( ABCD \right)\) là trung điểm của đoạn \(AB. \) Gọi \(K\) là trung điểm của đoạn \(AD. \) Khoảng cách giữa hai đường \(HK\) và \(SD\) theo \(a\) là:
Cho tập Y gồm 5 điểm phân biệt trên mặt phẳng. Số véc-tơ khác \(\overrightarrow{0}\) có điểm đầu, điểm cuối thuộc tập Y là
Cho \(x,y\) là các số thực thỏa mãn \(x\ne 0\) và \({{\left( {{3}^{{{x}^{2}}}} \right)}^{3y}}={{27}^{x}}.\) Khẳng định nào sau đây là khẳng định đúng?
Cắt một khối cầu bởi một mặt phẳng đi qua tâm thì được một hình tròn có diện tích bằng \(16\pi .\) Tính diện tích của mặt cầu giới hạn nên khối cầu đó?
Hàm số \(y={{\left( 4-{{x}^{2}} \right)}^{\frac{3}{5}}}\) có tập xác định