Cho các số thực dương a,b với \(a\ne0\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaamOyaiabg6da+iaaicda % aaa!3C89! {\log _a}b > 0\) . Khẳng định nào sau đây là đúng?
A.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamqaaqaabe
% qaaiaaicdacqGH8aapcaWGHbGaaiilaiaaykW7caWGIbGaeyipaWJa
% aGymaaqaaiaaicdacqGH8aapcaWGHbGaeyipaWJaaGymaiabgYda8i
% aadkgaaaGaay5waaaaaa!44C9!
\left[ \begin{array}{l}
0 < a,\,b < 1\\
0 < a < 1 < b
\end{array} \right.\)
B.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamqaaqaabe
% qaaiaaicdacqGH8aapcaWGHbGaaiilaiaaykW7caWGIbGaeyipaWJa
% aGymaaqaaiaaigdacqGH8aapcaWGHbGaaiilaiaaykW7caaMc8Uaam
% OyaaaacaGLBbaaaaa!45CD!
\left[ \begin{array}{l}
0 < a,\,b < 1\\
1 < a,\,\,b
\end{array} \right.\)
C.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamqaaqaabe
% qaaiaaicdacqGH8aapcaWGIbGaeyipaWJaaGymaiabgYda8iaadgga
% aeaacaaIXaGaeyipaWJaamyyaiaacYcacaaMc8UaaGPaVlaadkgaaa
% Gaay5waaaaaa!4496!
\left[ \begin{array}{l}
0 < b < 1 < a\\
1 < a,\,\,b
\end{array} \right.\)
D.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamqaaqaabe
% qaaiaaicdacqGH8aapcaWGHbGaaiilaiaaykW7caWGIbGaeyipaWJa
% aGymaaqaaiaaicdacqGH8aapcaWGIbGaeyipaWJaaGymaiabgYda8i
% aadggaaaGaay5waaaaaa!44C9!
\left[ \begin{array}{l}
0 < a,\,b < 1\\
0 < b < 1 < a
\end{array} \right.\)
Lời giải của giáo viên
Ta có : \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaamOyaiabg6da+iaaicda % cqGHuhY2daWabaabaeqabaWaaiqaaqaabeqaaiaadggacqGH+aGpca % aIXaaabaGaamOyaiabg6da+iaadggadaahaaWcbeqaaiaaicdaaaGc % cqGH9aqpcaaIXaaaaiaawUhaaaqaamaaceaaeaqabeaacaaIWaGaey % ipaWJaamyyaiabgYda8iaaigdaaeaacaaIWaGaeyipaWJaamOyaiab % gYda8iaadggadaahaaWcbeqaaiaaicdaaaGccqGH9aqpcaaIXaaaai % aawUhaaaaacaGLBbaaaaa!55FD! {\log _a}b > 0 \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} a > 1\\ b > {a^0} = 1 \end{array} \right.\\ \left\{ \begin{array}{l} 0 < a < 1\\ 0 < b < {a^0} = 1 \end{array} \right. \end{array} \right.\)Vậy chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Biết rằng hệ số của \(x^4\) trong khai triển nhị thức Newton \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIYaGaeyOeI0IaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaamOB % aaaakiaacYcacaaMc8+aaeWaaeaacaWGUbGaeyicI4SaeSyfHu6aaW % baaSqabeaacaGGQaaaaaGccaGLOaGaayzkaaaaaa!43D8! {\left( {2 - x} \right)^n},\,\left( {n \in {N^*}} \right)\) bằng 60 Tìm n.
Cho hình chóp tam giác đều có cạnh đáy bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aI2aaaleqaaaaa!36CE! \sqrt 6 \) và chiều cao h = 1. Diện tích của mặt cầu ngoại tiếp của hình chóp đó là:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maabmaabaGaaGinaiabgkHiTiaadIhadaahaaWcbeqaaiaaikda % aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca % aIXaaaaa!3FAB! y = {\left( {4 - {x^2}} \right)^2} + 1\) có giá trị lớn nhất trên đoạn \([-1; 1]\) là:
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Số nghiệm thực của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCa % aaleqabaGaamiEaaaakiabgkHiTiaaikdadaahaaWcbeqaaiaadIha % cqGHRaWkcaaIYaaaaOGaey4kaSIaaG4maiabg2da9iaaicdaaaa!3FBF! {4^x} - {2^{x + 2}} + 3 = 0\) là:
Tổng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9iaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGaaG4naaqaaiaa % igdaaaGccqGHRaWkcaWGdbWaa0baaSqaaiaaikdacaaIWaGaaGymai % aaiEdaaeaacaaIZaaaaOGaey4kaSIaam4qamaaDaaaleaacaaIYaGa % aGimaiaaigdacaaI3aaabaGaaGynaaaakiabgUcaRiaac6cacaGGUa % GaaiOlaiabgUcaRiaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGa % aG4naaqaaiaaikdacaaIWaGaaGymaiaaiEdaaaaaaa!5254! T = C_{2017}^1 + C_{2017}^3 + C_{2017}^5 + ... + C_{2017}^{2017}\) bằng:
Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập số thực R ?
Cho hàm số \(y = f(x)\) có đạo hàm trên R . Đường cong trong hình vẽ bên là đồ thị hàm số \(y = f'(x)\) , ( \(y = f'(x)\) liên tục trên R ). Xét hàm số
. Mệnh đề nào dưới đây sai?
Từ các chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGim % aiaaiodacaaI1aGaamiEamaaCaaaleqabaGaaGOmaaaakmaabmaaba % GaaGymaiaaiwdacqGHsislcaWG4baacaGLOaGaayzkaaaaaa!44C9! G\left( x \right) = 0,035{x^2}\left( {15 - x} \right)\) , trong đó x là liều lượng thuốc được tiêm cho bệnh nhân ( x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Tìm số hạng không chứa x trong khai triển nhị thức Newton \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyOeI0YaaSaaaeaacaaIYaaabaGaamiEamaaCaaaleqabaGa % aGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaaIXa % aaaaaa!3DC6! {\left( {x - \frac{2}{{{x^2}}}} \right)^{21}}\), \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyiyIKRaaGimaiaacYcacaaMc8UaaGPaVlaad6gacqGHiiIZ % cqWIvesPdaahaaWcbeqaaiaacQcaaaaakiaawIcacaGLPaaaaaa!4388! \left( {x \ne 0,\,\,n \in {N^*}} \right)\).
Cho hình nón có góc ở đỉnh bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaic % dacqGHWcaScaGGSaaaaa!3A09! 60^\circ ,\) diện tích xung quanh bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiabec % 8aWjaadggadaahaaWcbeqaaiaaikdaaaaaaa!3A40! 6\pi {a^2}\). Tính thể tích của khối nón đã cho.
Đồ thị hàm số nào sau đây nằm phía dưới trục hoành?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a . Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABC) bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaic % dacqGHWcaSaaa!395A! 60^\circ \) . Khoảng cách giữa hai đường thẳng BC và DM là