Tổng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9iaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGaaG4naaqaaiaa % igdaaaGccqGHRaWkcaWGdbWaa0baaSqaaiaaikdacaaIWaGaaGymai % aaiEdaaeaacaaIZaaaaOGaey4kaSIaam4qamaaDaaaleaacaaIYaGa % aGimaiaaigdacaaI3aaabaGaaGynaaaakiabgUcaRiaac6cacaGGUa % GaaiOlaiabgUcaRiaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGa % aG4naaqaaiaaikdacaaIWaGaaGymaiaaiEdaaaaaaa!5254! T = C_{2017}^1 + C_{2017}^3 + C_{2017}^5 + ... + C_{2017}^{2017}\) bằng:
A.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa
% aaleqabaGaaGOmaiaaicdacaaIXaGaaG4naaaakiabgkHiTiaaigda
% aaa!3B81!
{2^{2017}} - 1\)
B.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa
% aaleqabaGaaGOmaiaaicdacaaIXaGaaGOnaaaaaaa!39CE!
{2^{2016}}\)
C.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa
% aaleqabaGaaGOmaiaaicdacaaIXaGaaG4naaaaaaa!39CF!
{2^{2017}}\)
D.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa
% aaleqabaGaaGOmaiaaicdacaaIXaGaaGOnaaaakiabgkHiTiaaigda
% aaa!3B80!
{2^{2016}} - 1\)
Lời giải của giáo viên
Xét hai khai triển:
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa % aaleqabaGaaGOmaiaaicdacaaIXaGaaG4naaaakiabg2da9maabmaa % baGaaGymaiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaai % aaikdacaaIWaGaaGymaiaaiEdaaaGccqGH9aqpcaWGdbWaa0baaSqa % aiaaikdacaaIWaGaaGymaiaaiEdaaeaacaaIWaaaaOGaey4kaSIaam % 4qamaaDaaaleaacaaIYaGaaGimaiaaigdacaaI3aaabaGaaGymaaaa % kiabgUcaRiaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGaaG4naa % qaaiaaikdaaaGccqGHRaWkcaWGdbWaa0baaSqaaiaaikdacaaIWaGa % aGymaiaaiEdaaeaacaaIZaaaaOGaey4kaSIaaiOlaiaac6cacaGGUa % Gaey4kaSIaam4qamaaDaaaleaacaaIYaGaaGimaiaaigdacaaI3aaa % baGaaGOmaiaaicdacaaIXaGaaG4naaaakiaaykW7caaMc8UaaGPaVp % aabmaabaGaaGymaaGaayjkaiaawMcaaaaa!69E9! {2^{2017}} = {\left( {1 + 1} \right)^{2017}} = C_{2017}^0 + C_{2017}^1 + C_{2017}^2 + C_{2017}^3 + ... + C_{2017}^{2017}\,\,\,\left( 1 \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2 % da9maabmaabaGaaGymaiabgkHiTiaaigdaaiaawIcacaGLPaaadaah % aaWcbeqaaiaaikdacaaIWaGaaGymaiaaiEdaaaGccqGH9aqpcaWGdb % Waa0baaSqaaiaaikdacaaIWaGaaGymaiaaiEdaaeaacaaIWaaaaOGa % eyOeI0Iaam4qamaaDaaaleaacaaIYaGaaGimaiaaigdacaaI3aaaba % GaaGymaaaakiabgUcaRiaadoeadaqhaaWcbaGaaGOmaiaaicdacaaI % XaGaaG4naaqaaiaaikdaaaGccqGHsislcaWGdbWaa0baaSqaaiaaik % dacaaIWaGaaGymaiaaiEdaaeaacaaIZaaaaOGaey4kaSIaaiOlaiaa % c6cacaGGUaGaeyOeI0Iaam4qamaaDaaaleaacaaIYaGaaGimaiaaig % dacaaI3aaabaGaaGOmaiaaicdacaaIXaGaaG4naaaakiaaykW7caaM % c8UaaGPaVlaaykW7daqadaqaaiaaikdaaiaawIcacaGLPaaaaaa!6876! 0 = {\left( {1 - 1} \right)^{2017}} = C_{2017}^0 - C_{2017}^1 + C_{2017}^2 - C_{2017}^3 + ... - C_{2017}^{2017}\,\,\,\,\left( 2 \right)\)
Lấy (1) - (2) theo vế ta được: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa % aaleqabaGaaGOmaiaaicdacaaIXaGaaG4naaaakiabg2da9iaaykW7 % caaMc8UaaGPaVlaaikdadaqadaqaaiaadoeadaqhaaWcbaGaaGOmai % aaicdacaaIXaGaaG4naaqaaiaaigdaaaGccqGHRaWkcaWGdbWaa0ba % aSqaaiaaikdacaaIWaGaaGymaiaaiEdaaeaacaaIZaaaaOGaey4kaS % Iaam4qamaaDaaaleaacaaIYaGaaGimaiaaigdacaaI3aaabaGaaGyn % aaaakiabgUcaRiaac6cacaGGUaGaaiOlaiabgUcaRiaadoeadaqhaa % WcbaGaaGOmaiaaicdacaaIXaGaaG4naaqaaiaaikdacaaIWaGaaGym % aiaaiEdaaaaakiaawIcacaGLPaaacqGHshI3caWGubGaeyypa0JaaG % OmamaaCaaaleqabaGaaGOmaiaaicdacaaIXaGaaGOnaaaaaaa!6466! {2^{2017}} = \,\,\,2\left( {C_{2017}^1 + C_{2017}^3 + C_{2017}^5 + ... + C_{2017}^{2017}} \right) \Rightarrow T = {2^{2016}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Biết rằng hệ số của \(x^4\) trong khai triển nhị thức Newton \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIYaGaeyOeI0IaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaamOB % aaaakiaacYcacaaMc8+aaeWaaeaacaWGUbGaeyicI4SaeSyfHu6aaW % baaSqabeaacaGGQaaaaaGccaGLOaGaayzkaaaaaa!43D8! {\left( {2 - x} \right)^n},\,\left( {n \in {N^*}} \right)\) bằng 60 Tìm n.
Cho hình chóp tam giác đều có cạnh đáy bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aI2aaaleqaaaaa!36CE! \sqrt 6 \) và chiều cao h = 1. Diện tích của mặt cầu ngoại tiếp của hình chóp đó là:
Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập số thực R ?
Tìm số hạng không chứa x trong khai triển nhị thức Newton \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyOeI0YaaSaaaeaacaaIYaaabaGaamiEamaaCaaaleqabaGa % aGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaaIXa % aaaaaa!3DC6! {\left( {x - \frac{2}{{{x^2}}}} \right)^{21}}\), \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyiyIKRaaGimaiaacYcacaaMc8UaaGPaVlaad6gacqGHiiIZ % cqWIvesPdaahaaWcbeqaaiaacQcaaaaakiaawIcacaGLPaaaaaa!4388! \left( {x \ne 0,\,\,n \in {N^*}} \right)\).
Từ các chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGim % aiaaiodacaaI1aGaamiEamaaCaaaleqabaGaaGOmaaaakmaabmaaba % GaaGymaiaaiwdacqGHsislcaWG4baacaGLOaGaayzkaaaaaa!44C9! G\left( x \right) = 0,035{x^2}\left( {15 - x} \right)\) , trong đó x là liều lượng thuốc được tiêm cho bệnh nhân ( x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maabmaabaGaaGinaiabgkHiTiaadIhadaahaaWcbeqaaiaaikda % aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca % aIXaaaaa!3FAB! y = {\left( {4 - {x^2}} \right)^2} + 1\) có giá trị lớn nhất trên đoạn \([-1; 1]\) là:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a . Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABC) bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaic % dacqGHWcaSaaa!395A! 60^\circ \) . Khoảng cách giữa hai đường thẳng BC và DM là
Tìm tất cả các giá trị thực của tham số m để hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iGacYgacaGGVbGaai4zamaabmaabaGaamiEamaaCaaaleqabaGa % aGOmaaaakiabgkHiTiaaikdacaWGTbGaamiEaiabgUcaRiaaisdaai % aawIcacaGLPaaaaaa!4379! y = \log \left( {{x^2} - 2mx + 4} \right)\) có tập xác định là R .
Cho hình nón có góc ở đỉnh bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaic % dacqGHWcaScaGGSaaaaa!3A09! 60^\circ ,\) diện tích xung quanh bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiabec % 8aWjaadggadaahaaWcbeqaaiaaikdaaaaaaa!3A40! 6\pi {a^2}\). Tính thể tích của khối nón đã cho.
Đồ thị hàm số nào sau đây nằm phía dưới trục hoành?
Tính tích tất cả các nghiệm thực của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaadaWcaaqaaiaa % ikdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaqaai % aaikdacaWG4baaaaGaayjkaiaawMcaaiabgUcaRiaaikdadaahaaWc % beqaamaabmaabaGaamiEaiabgUcaRmaalaaabaGaaGymaaqaaiaaik % dacaWG4baaaaGaayjkaiaawMcaaaaakiabg2da9iaaiwdaaaa!4AD7! {\log _2}\left( {\frac{{2{x^2} + 1}}{{2x}}} \right) + {2^{\left( {x + \frac{1}{{2x}}} \right)}} = 5\)
Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A .