Câu hỏi Đáp án 2 năm trước 34

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a . Gọi M, N  lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABC) bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaic % dacqGHWcaSaaa!395A! 60^\circ \) . Khoảng cách giữa hai đường thẳng BC và DM là

A. \(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaac6
% cadaGcaaqaamaalaaabaGaaGymaiaaiwdaaeaacaaI2aGaaGOmaaaa
% aSqabaGccaGGUaaaaa!3B69!
a.\sqrt {\frac{{15}}{{62}}} .\)

B. \(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaac6
% cadaGcaaqaamaalaaabaGaaG4maiaaicdaaeaacaaIZaGaaGymaaaa
% aSqabaGccaGGUaaaaa!3B62!
a.\sqrt {\frac{{30}}{{31}}} .\)

Đáp án chính xác ✅

C. \(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaac6
% cadaGcaaqaamaalaaabaGaaGymaiaaiwdaaeaacaaI2aGaaGioaaaa
% aSqabaGccaGGUaaaaa!3B6F!
a.\sqrt {\frac{{15}}{{68}}} .\)

D. \(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaac6
% cadaGcaaqaamaalaaabaGaaGymaiaaiwdaaeaacaaIXaGaaG4naaaa
% aSqabaGccaGGUaaaaa!3B69!
a.\sqrt {\frac{{15}}{{17}}} .\)

Lời giải của giáo viên

verified HocOn247.com

Gọi  là trung điểm OA . Vì \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaad2 % eacaqGVaGaae4laiaadofacaWGpbGaeyO0H4Taamysaiaad2eacqGH % LkIxdaqadaqaaiaadgeacaWGcbGaam4qaiaadseaaiaawIcacaGLPa % aaaaa!44F9! IM{\rm{//}}SO \Rightarrow IM \bot \left( {ABCD} \right)\) nên hình chiếu của MN lên (ABCD) là IN. Suy ra: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaca % WGnbGaamOtaiaadMeaaiaawkWaaiabg2da9iaaiAdacaaIWaGaeyiS % aalaaa!3D95! \widehat {MNI} = 60^\circ \)

Áp dụng định lí cô sin trong \(\Delta CIN\), ta có

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaad6 % eacqGH9aqpdaGcaaqaaiaadoeacaWGjbWaaWbaaSqabeaacaaIYaaa % aOGaey4kaSIaam4qaiaad6eadaahaaWcbeqaaiaaikdaaaGccqGHsi % slcaaIYaGaam4qaiaadMeacaGGUaGaam4qaiaad6eacaGGUaGaae4y % aiaab+gacaqGZbGaaGinaiaaiwdacqGHWcaSaSqabaGccqGH9aqpda % GcaaqaamaabmaabaWaaSaaaeaacaaIZaGaamyyamaakaaabaGaaGOm % aaWcbeaaaOqaaiaaisdaaaaacaGLOaGaayzkaaWaaWbaaSqabeaaca % aIYaaaaOGaey4kaSYaaeWaaeaadaWcaaqaaiaadggaaeaacaaIYaaa % aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaik % dadaWcaaqaaiaaiodacaWGHbWaaOaaaeaacaaIYaaaleqaaaGcbaGa % aGinaaaacaGGUaWaaSaaaeaacaWGHbaabaGaaGOmaaaacaGGUaWaaS % aaaeaadaGcaaqaaiaaikdaaSqabaaakeaacaaIYaaaaaWcbeaakiab % g2da9maalaaabaGaamyyamaakaaabaGaaGynaaWcbeaaaOqaaiaaik % dadaGcaaqaaiaaikdaaSqabaaaaaaa!6568! IN = \sqrt {C{I^2} + C{N^2} - 2CI.CN.{\rm{cos}}45^\circ } = \sqrt {{{\left( {\frac{{3a\sqrt 2 }}{4}} \right)}^2} + {{\left( {\frac{a}{2}} \right)}^2} - 2\frac{{3a\sqrt 2 }}{4}.\frac{a}{2}.\frac{{\sqrt 2 }}{2}} = \frac{{a\sqrt 5 }}{{2\sqrt 2 }}\)

Trong tam giác vuông MIN ta có.

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg % gacaGGUbGaaGOnaiaaicdacqGHWcaScqGH9aqpdaWcaaqaaiaad2ea % caWGjbaabaGaamysaiaad6eaaaGaeyO0H4TaamytaiaadMeacqGH9a % qpcaWGjbGaamOtaiaac6cadaGcaaqaaiaaiodaaSqabaGccqGH9aqp % daWcaaqaaiaadggadaGcaaqaaiaaigdacaaI1aaaleqaaaGcbaGaaG % OmamaakaaabaGaaGOmaaWcbeaaaaGccqGH9aqpdaWcaaqaaiaadgga % daGcaaqaaiaaiodacaaIWaaaleqaaaGcbaGaaGinaaaacqGHshI3ca % WGtbGaam4taiabg2da9maalaaabaGaamyyamaakaaabaGaaG4maiaa % icdaaSqabaaakeaacaaIYaaaaaaa!5AA5! \tan 60^\circ = \frac{{MI}}{{IN}} \Rightarrow MI = IN.\sqrt 3 = \frac{{a\sqrt {15} }}{{2\sqrt 2 }} = \frac{{a\sqrt {30} }}{4} \Rightarrow SO = \frac{{a\sqrt {30} }}{2}\)

Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaabm % aabaGaamOqaiaadoeacaGGSaGaamiraiaad2eaaiaawIcacaGLPaaa % cqGH9aqpcaWGKbWaaeWaaeaacaWGcbGaam4qaiaacYcadaqadaqaai % aadofacaWGbbGaamiraaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab % g2da9iaadsgadaqadaqaaiaad6eacaGGSaWaaeWaaeaacaWGtbGaam % yqaiaadseaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcaaI % YaGaamizamaabmaabaGaam4taiaacYcadaqadaqaaiaadofacaWGbb % GaamiraaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9iaaikda % caWGKbWaaeWaaeaacaWGpbGaaiilamaabmaabaGaam4uaiaadkeaca % WGdbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa!6222! d\left( {BC,DM} \right) = d\left( {BC,\left( {SAD} \right)} \right) = d\left( {N,\left( {SAD} \right)} \right) = 2d\left( {O,\left( {SAD} \right)} \right) = 2d\left( {O,\left( {SBC} \right)} \right)\)

Kẻ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadw % eacqGHLkIxcaWGtbGaamOtaiabgkDiElaad+eacaWGfbGaeyyPI41a % aeWaaeaacaWGtbGaamOqaiaadoeaaiaawIcacaGLPaaaaaa!448A! OE \bot SN \Rightarrow OE \bot \left( {SBC} \right)\)

Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaabm % aabaGaam4taiaacYcadaqadaqaaiaadofacaWGcbGaam4qaaGaayjk % aiaawMcaaaGaayjkaiaawMcaaiabg2da9iaad+eacaWGfbaaaa!407E! d\left( {O,\left( {SBC} \right)} \right) = OE\) mà \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaam4taiaadweadaahaaWcbeqaaiaaikdaaaaaaOGaeyyp % a0ZaaSaaaeaacaaIXaaabaGaam4taiaadofadaahaaWcbeqaaiaaik % daaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaam4taiaad6eadaah % aaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacaaI0aaabaGaaG % 4maiaaicdacaWGHbWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaa % laaabaGaaGinaaqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaey % ypa0ZaaSaaaeaacaaI2aGaaGOmaaqaaiaaigdacaaI1aGaamyyamaa % CaaaleqabaGaaGOmaaaaaaGccqGHshI3caWGpbGaamyraiabg2da9m % aalaaabaGaamyyamaakaaabaGaaGymaiaaiwdaaSqabaaakeaadaGc % aaqaaiaaiAdacaaIYaaaleqaaaaaaaa!59C6! \frac{1}{{O{E^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{N^2}}} = \frac{4}{{30{a^2}}} + \frac{4}{{{a^2}}} = \frac{{62}}{{15{a^2}}} \Rightarrow OE = \frac{{a\sqrt {15} }}{{\sqrt {62} }}\)

Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaabm % aabaGaamOqaiaadoeacaGGSaGaamiraiaad2eaaiaawIcacaGLPaaa % cqGH9aqpcaaIYaGaam4taiaadweacqGH9aqpdaWcaaqaaiaaikdaca % WGHbWaaOaaaeaacaaIXaGaaGynaaWcbeaaaOqaamaakaaabaGaaGOn % aiaaikdaaSqabaaaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodaca % aIWaaabaGaaG4maiaaigdaaaaaleqaaOGaamyyaaaa!4AA8! d\left( {BC,DM} \right) = 2OE = \frac{{2a\sqrt {15} }}{{\sqrt {62} }} = \sqrt {\frac{{30}}{{31}}} a\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Biết rằng hệ số của \(x^4\) trong khai triển nhị thức Newton \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIYaGaeyOeI0IaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaamOB % aaaakiaacYcacaaMc8+aaeWaaeaacaWGUbGaeyicI4SaeSyfHu6aaW % baaSqabeaacaGGQaaaaaGccaGLOaGaayzkaaaaaa!43D8! {\left( {2 - x} \right)^n},\,\left( {n \in {N^*}} \right)\) bằng 60 Tìm n.

Xem lời giải » 2 năm trước 41
Câu 2: Trắc nghiệm

Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maabmaabaGaaGinaiabgkHiTiaadIhadaahaaWcbeqaaiaaikda % aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca % aIXaaaaa!3FAB! y = {\left( {4 - {x^2}} \right)^2} + 1\) có giá trị lớn nhất trên đoạn \([-1; 1]\) là:

Xem lời giải » 2 năm trước 41
Câu 3: Trắc nghiệm

Cho hình chóp tam giác đều có cạnh đáy bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aI2aaaleqaaaaa!36CE! \sqrt 6 \) và chiều cao h = 1. Diện tích của mặt cầu ngoại tiếp của hình chóp đó là: 

Xem lời giải » 2 năm trước 40
Câu 4: Trắc nghiệm

Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Xem lời giải » 2 năm trước 38
Câu 5: Trắc nghiệm

Số nghiệm thực của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCa % aaleqabaGaamiEaaaakiabgkHiTiaaikdadaahaaWcbeqaaiaadIha % cqGHRaWkcaaIYaaaaOGaey4kaSIaaG4maiabg2da9iaaicdaaaa!3FBF! {4^x} - {2^{x + 2}} + 3 = 0\) là:

Xem lời giải » 2 năm trước 38
Câu 6: Trắc nghiệm

Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?

Xem lời giải » 2 năm trước 37
Câu 7: Trắc nghiệm

Tổng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9iaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGaaG4naaqaaiaa % igdaaaGccqGHRaWkcaWGdbWaa0baaSqaaiaaikdacaaIWaGaaGymai % aaiEdaaeaacaaIZaaaaOGaey4kaSIaam4qamaaDaaaleaacaaIYaGa % aGimaiaaigdacaaI3aaabaGaaGynaaaakiabgUcaRiaac6cacaGGUa % GaaiOlaiabgUcaRiaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGa % aG4naaqaaiaaikdacaaIWaGaaGymaiaaiEdaaaaaaa!5254! T = C_{2017}^1 + C_{2017}^3 + C_{2017}^5 + ... + C_{2017}^{2017}\)  bằng:

Xem lời giải » 2 năm trước 37
Câu 8: Trắc nghiệm

Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập số thực R ?

Xem lời giải » 2 năm trước 36
Câu 9: Trắc nghiệm

Cho hàm số \(y = f(x)\) có đạo hàm trên R . Đường cong trong hình vẽ bên là đồ thị hàm số \(y = f'(x)\) , ( \(y = f'(x)\) liên tục trên R ). Xét hàm số 

. Mệnh đề nào dưới đây sai?

Xem lời giải » 2 năm trước 36
Câu 10: Trắc nghiệm

Tìm số hạng không chứa x trong khai triển nhị thức Newton \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyOeI0YaaSaaaeaacaaIYaaabaGaamiEamaaCaaaleqabaGa % aGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaaIXa % aaaaaa!3DC6! {\left( {x - \frac{2}{{{x^2}}}} \right)^{21}}\), \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyiyIKRaaGimaiaacYcacaaMc8UaaGPaVlaad6gacqGHiiIZ % cqWIvesPdaahaaWcbeqaaiaacQcaaaaakiaawIcacaGLPaaaaaa!4388! \left( {x \ne 0,\,\,n \in {N^*}} \right)\).

Xem lời giải » 2 năm trước 35
Câu 11: Trắc nghiệm

Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGim % aiaaiodacaaI1aGaamiEamaaCaaaleqabaGaaGOmaaaakmaabmaaba % GaaGymaiaaiwdacqGHsislcaWG4baacaGLOaGaayzkaaaaaa!44C9! G\left( x \right) = 0,035{x^2}\left( {15 - x} \right)\) , trong đó x là liều lượng thuốc được tiêm cho bệnh nhân ( x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

Xem lời giải » 2 năm trước 35
Câu 12: Trắc nghiệm

Từ các chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau? 

Xem lời giải » 2 năm trước 34
Câu 13: Trắc nghiệm

Đồ thị hàm số nào sau đây nằm phía dưới trục hoành?

Xem lời giải » 2 năm trước 34
Câu 14: Trắc nghiệm

Cho hình nón có góc ở đỉnh bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaic % dacqGHWcaScaGGSaaaaa!3A09! 60^\circ ,\) diện tích xung quanh bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiabec % 8aWjaadggadaahaaWcbeqaaiaaikdaaaaaaa!3A40! 6\pi {a^2}\). Tính thể tích của khối nón đã cho.

Xem lời giải » 2 năm trước 33
Câu 15: Trắc nghiệm

Tìm tất cả các giá trị thực  của tham số m để hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iGacYgacaGGVbGaai4zamaabmaabaGaamiEamaaCaaaleqabaGa % aGOmaaaakiabgkHiTiaaikdacaWGTbGaamiEaiabgUcaRiaaisdaai % aawIcacaGLPaaaaaa!4379! y = \log \left( {{x^2} - 2mx + 4} \right)\) có tập xác định là R . 

Xem lời giải » 2 năm trước 33

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »