Cho đồ thị hàm số \(y = {x^\alpha },y = {x^\beta },y = {x^\gamma }\) trên \(\left( {0; + \infty } \right)\) trên cùng một hệ trục tọa độ như hình vẽ bên. Mệnh đề nào sau đây đúng?
A. \(\gamma < \beta < \alpha < 0\)
B. \(0 < \gamma < \beta < \alpha < 1\)
C. \(0 < \alpha < \beta < \gamma < 1\)
D. \(1 < \gamma < \beta < \alpha \)
Lời giải của giáo viên
Ta có: 0 < x < 1 thì \({x^\alpha } < {x^\beta } < {x^\gamma } < {x^1} = > \alpha > \beta > \gamma > 1.\)
Với x > 1 thì: \({x^1} < {x^\gamma } < {x^\beta } < {x^\alpha } = > 1 < \gamma < \beta < \alpha .\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) có đồ thị hàm số như hình bên. Phương trình f(x) = 1 có bao nhiêu nghiệm thực phân biệt nhỏ hơn 2?
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới . Để đồ thị hàm số \(h\left( x \right) = \left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|\) có số điểm cực trị ít nhất thì giá trị nhỏ nhất của tham số \(m = {m_0}\) . Tìm mệnh đề đúng trong các mệnh đề sau:
Cho hàm số y = f(x) có đồ thị hàm số như hình vẽ dưới. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( {{x^2} - 2x} \right)\) trên đoạn \(\left[ { - \frac{3}{2};\frac{7}{2}} \right]\). Tìm khẳng định sai trong các khẳng định sau.
Với a là số thực dương bất kì, mệnh đề nào dưới đây đúng?
Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}
{x + \sqrt {{y^2} - {x^2}} = 12 - y}\\
{x\sqrt {{y^2} - {x^2}} = 12\,\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.\) ta được hai nghiệm \(\left( {{x_1};{y_1}} \right)\) và \(\left( {{x_2};{y_2}} \right)\) . Tính giá trị biểu thức \(T = x_1^2 + x_2^2 - y_1^2\)
Cho hình bình hành ABCD. Tổng các vecto \(\overrightarrow {AB} {\rm{ }} + {\rm{ }}\overrightarrow {AC} {\rm{ }} + \overrightarrow {{\rm{ }}AD} \) là
Từ các chữ số 1; 2; 3 có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau?
Thể tích V của khối trụ có bán kính và chiều cao đều bằng 3.
Một hình trị có trục OO’ chứa tâm của một mặt cầu bán kính R, các đường tròn đáy của hình trụ đều thuộc mặt cầu trên, đường cao của hình trụ bằng R. Tính thể tích V của khối trụ.
Phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) tại điểm có hoành độ \({x_0} = - 2\) là
Trong mặt phẳng Oxy cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 4\) Phép vị tự tâm O (với O là gốc tọa độ) tỉ số k = 2 biến (C) thành đường tròn nào trong các đường tròn có phương trình sau?
Đồ thị hình dưới đây là đồ thị hàm số nào trong các hàm số sau?
Đồ thị của hàm số \(y = - {x^3} + 3{x^2} + 2x - 1\) và đồ thị hàm số \(y = 3{x^2} - 2x - 1\) có tất cả bao nhiêu điểm chung?