Cho \(f(x) \ge g(x),\forall x \in [a;b]\). Hình phẳng S1 giới hạn bởi đường y = f(x), y = 0, x = a, x = b (a<b) đem quay quanh Ox có thể tích V1. Hình phẳng S2 giới hạn bởi đường y = g(x), y = 0, x = a, x = b đem quay quanh Ox có thể tích V2. Lựa chọn phương án đúng.
A. Nếu V1 = V2 thì chắc chắn suy ra \(f(x) = g(x),\forall x \in [a;b]\).
B. S1>S2.
C. V1 > V2.
D. Cả 3 phương án trên đều sai.
Lời giải của giáo viên
Ta có:
+ \({V_1} = \pi \int\limits_a^b {{f^2}\left( x \right)} \,dx\)
+ \({V_2} = \pi \int\limits_a^b {{g^2}\left( x \right)} \,dx\)
Nếu V1 = V2 thì chưa chắc ta có: \(f(x) = g(x),\forall x \in [a;b]\).
Chọn đáp án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian tọa độ \(Oxyz\) cho ba điểm \(M\left( {1;1;1} \right),\,N\left( {2;3;4} \right),\,P\left( {7;7;5} \right)\). Để tứ giác \(MNPQ\) là hình bình hành thì tọa độ điểm \(Q\) là
Trên đồ thị (C) của hàm số \(y = {{x + 10} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
Tính nguyên hàm \(\int {{{\left( {5x + 3} \right)}^3}\,dx} \) ta được:
Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = \tan x,\,\,y = 0,\,\,x = \dfrac{\pi }{3}\) quanh Ox là:
Cho 3 điểm \(A(1;1;1),B(1; - 1;0),C(0; - 2;3)\). Tam giác \(ABC\) là
Diện tích hình phẳng giới hạn bởi các đường : \(y = {x^2}\,,\,y = \dfrac{{{x^2}}}{8},\,\,y = \dfrac{{27}}{x}\) là:
Đặt \(F(x) = \int\limits_1^x {t\,dt} \). Khi đó F’(x) là hàm số nào dưới đây ?
Cho số phức z thỏa mãn \(\left( {3 - 2i} \right)z = 4 + 2i\). Tìm số phức liên hợp của z.
Cho x, y là hai số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây sai ?
Cho hàm số y = f(x) có bảng biến thiên như dưới đây.
Đồ thị của hàm số y = |f(x)| có bao nhiêu điểm cực trị ?
Trong không gian cho hai điểm \(A\left( { - 1;2;3} \right),\,B\left( {0;1;1} \right)\), độ dài đoạn \(AB\) bằng
Cho hàm số \(y = {2^x} - 2x\). Khẳng định nào sau đây sai :
Nếu \({\log _a}x = {1 \over 2}{\log _a}9 - {\log _a}5 + {\log _a}2\,\,\,\,(a > 0,\,a \ne 1)\) thì x bằng: