Cho f(x) là hàm liên tục trên (a ; b) và không phải là hàm hằng. Giả sử F(x) là một nguyên hàm của f(x). Lựa chọn phương án đúng:
A. F(x) –C không phải là nguyên hàm của f(x) với mọi số thực C.
B. F(x) +2C không phải là nguyên hàm của f(x) với mọi số thực C.
C. CF(x) không phải là nguyên hàm của f(x) với mọi số thực \(C \ne 1\).
D. Cả 3 phương án đều sai.
Lời giải của giáo viên
Ta có \(\int {f\left( x \right)} \,dx = F\left( x \right) + C\)
\( \Rightarrow \)\(CF\left( x \right)\) không phải là nguyên hàm của \(f\left( x \right)\)với mọi số thực \(C \ne 1\).
Chọn đáp án C.
CÂU HỎI CÙNG CHỦ ĐỀ
Điều kiện xác định của phương trình \({\log _x}(2{x^2} - 7x + 5) = 2\) là:
Tính nguyên hàm \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \) ta được:
Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:
Cho x và y là hai số phức. Trong các phương án sau, hãy lựa chọn phương án sai .
Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a và \(\widehat {A\,\,} = {60^0}\) . Chân đường cao hạ từ B' xuống (ABCD) trùng với giao điểm 2 đường chéo, biết BB' = a. Thể tích khối lăng trụ là:
Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng
Tìm hàm số F(x) biết rằng \(F'(x) = \dfrac{1}{{{{\sin }^2}x}}\) và đồ thị của hàm số F(x) đi qua điểm \(M\left( {\dfrac{\pi }{6};0} \right)\).
Một hình trụ \(\left( H \right)\) có diện tích xung quanh bằng \(4\pi \). Biết thiết diện của \(\left( H \right)\) qua trục là hình vuông. Diện tích toàn phần của \(\left( H \right)\) bằng
Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {x.\cos \left( {a - x} \right)\,dx} \).
Hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao \(SA = a\sqrt 6 \). Thể tích của khối chóp là:
Cho hai số phức \({z_1} = 1 + i\,,\,\,{z_2} = 1 - i\). Kết luận nào sau đây sai ?