Câu hỏi Đáp án 2 năm trước 30

Cho \(F(x)\) là một nguyên hàm của hàm số \(y = \frac{1}{{1 + \sin 2x}}\) với \(x \in R\backslash \left\{ { - \frac{\pi }{4} + k\pi ,k \in Z} \right\}.\) Biết \(F\left( 0 \right) = 1,{\rm{ }}F\left( \pi  \right) = 0\), tính giá trị biểu thức \(P = F\left( { - \frac{\pi }{{12}}} \right) - F\left( {\frac{{11\pi }}{{12}}} \right).\)

A. \(P=0\)

B. \(P = 2 - \sqrt 3 .\)

C. \(P=1\)

Đáp án chính xác ✅

D. Không tồn tại \(P\)

Lời giải của giáo viên

verified HocOn247.com

Với \(x\) thuộc vào mỗi khoảng \(\left( { - \frac{\pi }{4} + k\pi ; - \frac{\pi }{4} + k\pi } \right),{\rm{ }}k \in Z\) ta có

\(F\left( x \right) = \int {\frac{{{\rm{d}}x}}{{1 + \sin 2x}} = \int {\frac{{{\rm{d}}x}}{{{{\left( {\sin x + \cos x} \right)}^2}}} = \int {\frac{{{\rm{d}}x}}{{2{{\cos }^2}\left( {x + \frac{\pi }{4}} \right)}} = \frac{1}{2}tan\left( {x + \frac{\pi }{4}} \right)} } }  + C.\)

 \(0; - \frac{\pi }{{12}} \in \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right)\) nên \(F\left( 0 \right) - F\left( { - \frac{\pi }{{12}}} \right) = \frac{1}{2}\tan \left( {x - \frac{\pi }{4}} \right)\left| {\begin{array}{*{20}{c}}
0\\
{ - \frac{\pi }{{12}}}
\end{array}} \right. =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}\mathop  \to \limits^{F(0) = 1} F\left( { - \frac{\pi }{{12}}} \right) = \frac{3}{2} - \frac{{\sqrt 3 }}{2}.\)

\(\pi ;\frac{{11\pi }}{{12}} \in \left( {\frac{\pi }{4};\frac{{5\pi }}{4}} \right)\) nên \(F\left( \pi  \right) - F\left( {\frac{{11\pi }}{{12}}} \right) = \frac{1}{2}\tan \left( {x - \frac{\pi }{4}} \right)\left| {\begin{array}{*{20}{c}}
\pi \\
{\frac{{11\pi }}{{12}}}
\end{array}} \right. =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}\mathop  \to \limits^{F\left( \pi  \right) = 0} F\left( {\frac{{11\pi }}{{12}}} \right) = \frac{1}{2} - \frac{{\sqrt 3 }}{2}.\)

Vậy \(P = F\left( { - \frac{\pi }{{12}}} \right) - F\left( {\frac{{11\pi }}{{12}}} \right) = 1.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(f(x)\) liên tục trên R và \(\int\limits_1^9 {\frac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x = 4} ,{\rm{ }}\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x = 2} .\) Tính tích phân \(I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} .\)

Xem lời giải » 2 năm trước 40
Câu 2: Trắc nghiệm

Biết \(\int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {\frac{1}{{\sqrt {{e^{2x}} + 1}  - {e^x}}}{\rm{d}}x}  = 1 + \frac{1}{2}\ln \frac{b}{a} + a\sqrt a  - \sqrt b \) với \(a,{\rm{ }}b \in {Z^ + }.\) Tính \(P = a + b.\)

Xem lời giải » 2 năm trước 39
Câu 3: Trắc nghiệm

Biết \(\int\limits_1^2 {\frac{{{\rm{d}}x}}{{\left( {x + 1} \right)\sqrt x  + x\sqrt {x + 1} }} = \sqrt a }  - \sqrt b  - c\) với \(a,{\rm{ }}b,{\rm{ }}c \in {Z^ + }.\) Tính \(P = a + b + c\).

Xem lời giải » 2 năm trước 38
Câu 4: Trắc nghiệm

Cho các hàm số \(f(x), g(x)\) liên tục trên \(\left[ {0;1} \right],\) thỏa \(m.f\left( x \right) + n.f\left( {1 - x} \right) = g\left( x \right)\) với \(m, n\) là số thực khác 0 và \(\int\limits_0^1 {f\left( x \right){\rm{d}}x}  = \int\limits_0^1 {g\left( x \right){\rm{d}}x}  = 1.\) Tính \(m+n\)

Xem lời giải » 2 năm trước 38
Câu 5: Trắc nghiệm

Biết \(\int\limits_0^\pi  {\frac{{x{{\sin }^{2018}}x}}{{{{\sin }^{2018}}x + {{\cos }^{2018}}x}}{\rm{d}}x}  = \frac{{{\pi ^a}}}{b}\) với \(a,b \in {Z^ + }.\) Tính \(P = 2a + b.\)

Xem lời giải » 2 năm trước 37
Câu 6: Trắc nghiệm

Biết \(\int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{x\cos x}}{{\sqrt {1 + {x^2}}  + x}}{\rm{d}}x}  = a + \frac{{{\pi ^2}}}{b} + \frac{{\sqrt 3 \pi }}{c}\) với \(a, b, c\) là các số nguyên. Tính \(P = a - b + c.\)

Xem lời giải » 2 năm trước 37
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {0; + \infty } \right)\) và thỏa \(\int\limits_0^{{x^2}} {f\left( t \right){\rm{d}}t}  = x.\sin \left( {\pi x} \right)\). Tính \(f\left( {\frac{1}{4}} \right)\).

Xem lời giải » 2 năm trước 37
Câu 8: Trắc nghiệm

Cho biểu thức \(S = \ln \left( {1 + \int\limits_{\frac{n}{{4 + {m^2}}}}^{\frac{\pi }{2}} {\left( {2 - \sin 2x} \right){e^{2\cot x}}{\rm{d}}x} } \right),\) với số thực \(m \ne 0.\) Chọn khẳng định đúng trong các khẳng định sau.

Xem lời giải » 2 năm trước 36
Câu 9: Trắc nghiệm

Biết \(I = \int\limits_1^e {\frac{{{{\ln }^2}x + \ln x}}{{{{\left( {\ln x + x + 1} \right)}^3}}}{\rm{d}}x}  = \frac{1}{a} - \frac{b}{{{{\left( {e + 2} \right)}^2}}}\) với \(a,{\rm{ }}b \in {Z^ + }.\) Tính \(P = b - a.\)

Xem lời giải » 2 năm trước 36
Câu 10: Trắc nghiệm

Biết \(\int\limits_1^4 {\sqrt {\frac{1}{{4x}} + \frac{{\sqrt x  + {e^x}}}{{\sqrt x {e^{2x}}}}} {\rm{d}}x}  = a + {e^b} - {e^c}\) với \(a,{\rm{ }}b,{\rm{ }}c \in Z.\) Tính \(P = a + b + c.\)

Xem lời giải » 2 năm trước 36
Câu 11: Trắc nghiệm

Biết \(\int\limits_0^1 {\frac{{\pi {x^3} + {2^x} + e{x^3}{2^x}}}{{\pi  + e{{.2}^x}}}} {\rm{d}}x = \frac{1}{m} + \frac{1}{{e\ln n}}.\ln \left( {p + \frac{e}{{e + \pi }}} \right)\) với \(m,{\rm{ }}n,{\rm{ }}p\) là các số nguyên dương. Tính tổng \(P = m + n + p.\)

Xem lời giải » 2 năm trước 36
Câu 12: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên R và thỏa mãn \({f^3}\left( x \right) + f\left( x \right) = x\) với mọi \(x \in R.\) Tính \(I = \int\limits_0^2 {f\left( x \right){\rm{d}}x} .\)

Xem lời giải » 2 năm trước 36
Câu 13: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên R thỏa \(f\left( {{x^5} + 4x + 3} \right) = 2x + 1\) với mọi \(x \in R.\) Tích phân \(\int\limits_{ - 2}^8 {f\left( x \right){\rm{d}}x} \) bằng

Xem lời giải » 2 năm trước 36
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) thỏa mãn \(\int\limits_1^2 {f\left( {x - 1} \right){\rm{d}}x}  = 3\) và \(f\left( 1 \right) = 4.\) Tích phân \(\int\limits_0^1 {{x^3}f'\left( {{x^2}} \right){\rm{d}}x} \) bằng

Xem lời giải » 2 năm trước 35
Câu 15: Trắc nghiệm

Cho hàm số \(f(x)\) liên tục trên \(\left[ {a; + \infty } \right)\) với \(a>0\) và thỏa \(\int\limits_a^x {\frac{{f\left( t \right)}}{{{t^2}}}{\rm{d}}t}  + 6 = 2\sqrt x \) với mọi \(x>a\) Tính \(f(4)\).

Xem lời giải » 2 năm trước 35

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »