Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbGaaiikaiaadIhacaGGPaGaamizaiaadIhacqGH9aqpcqGHsisl % caaIXaaaleaacaaIWaaabaGaaGinaaqdcqGHRiI8aaaa!41A9! \int\limits_0^4 {f(x)dx = - 1} \). Tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbGaaiikaiaaisdacaWG4bGaaiykaiaadsgacaWG4baaleaacaaI % WaaabaGaaGymaaqdcqGHRiI8aaaa!3FB6! \int\limits_0^1 {f(4x)dx} \) bằng
A. \(\frac{1}{4}\)
B. \(-2\)
C. \(-\frac{1}{2}\)
D. \(-\frac{1}{4}\)
Lời giải của giáo viên
Đặt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 % da9iaaisdacaWG4bGaeyO0H4TaamizaiaadshacqGH9aqpcaaI0aGa % amizaiaadIhacqGHshI3caWGKbGaamiEaiabg2da9maalaaabaGaam % izaiaadshaaeaacaaI0aaaaaaa!498F! t = 4x \Rightarrow dt = 4dx \Rightarrow dx = \frac{{dt}}{4}\)
Đổi cận:
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b
% Gaeyypa0JaaGimaiabgkDiElaadshacqGH9aqpcaaIWaaabaGaamiE
% aiabg2da9iaaigdacqGHshI3caWG0bGaeyypa0JaaGinaaaaaa!45A5!
\begin{array}{l}
x = 0 \Rightarrow t = 0\\
x = 1 \Rightarrow t = 4
\end{array}\)
Khi đó
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbGaaiikaiaaisdacaWG4bGaaiykaiaadsgacaWG4baaleaacaaI % WaaabaGaaGymaaqdcqGHRiI8aOGaeyypa0Zaa8qCaeaacaWGMbGaai % ikaiaadshacaGGPaWaaSaaaeaacaWGKbGaamiDaaqaaiaaisdaaaGa % eyypa0ZaaSaaaeaacaaIXaaabaGaaGinaaaaaSqaaiaaicdaaeaaca % aI0aaaniabgUIiYdGcdaWdXbqaaiaadAgacaGGOaGaamiDaiaacMca % caWGKbGaamiDaaWcbaGaaGimaaqaaiaaisdaa0Gaey4kIipakiabg2 % da9maalaaabaGaeyOeI0IaaGymaaqaaiaaisdaaaaaaa!59B3! \int\limits_0^1 {f(4x)dx} = \int\limits_0^4 {f(t)\frac{{dt}}{4} = \frac{1}{4}} \int\limits_0^4 {f(t)dt} = \frac{{ - 1}}{4}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại B. \(AB=a\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA=\sqrt 2a\). Gọi E là trung điểm của \(AB\). Khoảng cách giữa đường thẳng \(SE\) và đường thẳng \(BC\) là
Cho số phức \(z=3-2i\). Điểm biểu diễn hình học của số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Daiabg2 % da9iaadQhacqGHRaWkcaWGPbWaa0aaaeaacaWG6baaaaaa!3BD2! {\rm{w}} = z + i\overline z \) có tọa độ
Từ các chữ số \(0;1;2;3;4;5;6;7\) lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau
Số đường tiệm cận của đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % igdaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmai % aadIhacqGHsislcaaIZaaaaaaa!41DF! y = \frac{{{x^2} - 1}}{{{x^2} - 2x - 3}}\) là
trong không gian \(Oxyz\) cho hai điểm \(A(0;1;2), B(2;2;1)\). Phương trình mặt phẳng qua A và vuông góc với AB là
Biết rằng tồn tại duy nhất bộ các số nguyên \(a,b,c\) sao cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % GGOaGaaGinaiaadIhacqGHRaWkcaaIYaGaaiykaiGacYgacaGGUbGa % amiEaiaadsgacaWG4bGaeyypa0JaamyyaiabgUcaRiaadkgaciGGSb % GaaiOBaiaaikdacqGHRaWkcaWGJbGaciiBaiaac6gacaaIZaaaleaa % caaIYaaabaGaaG4maaqdcqGHRiI8aaaa!4E0E! \int\limits_2^3 {(4x + 2)\ln xdx = a + b\ln 2 + c\ln 3} \). Giá trị của \(a+b+c\) là
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có thể tích bằng \(a^3\). Thể tích khối chóp \(A'.ABC\) là
Cho hình chóp \(S.ABC\)có thể tích \(70a^3\). Gọi M, N là accs điểm trên SB, SC sao cho \(SM=\frac{2}{3}SB, SN=\frac{4}{5}SC\). Thể tích khối chóp \(S.AMN\) bằng
Trong không gian \(Oxyz\), mặt cầu \((S): x^2+y^2+z^2-4x+4y+4=0\) có bán kính bằng
Giá trị nhỏ nhất của hàm số \(y=\frac{x^2+x+4}{x+1}\) trên đoạn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca % aIWaGaai4oaiaaikdaaiaawUfacaGLDbaaaaa!3A1A! \left[ {0;2} \right]\) bằng
Với phép biến đổi \(u=\sqrt x\), tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaSaaaeaacaWGLbWaaWbaaSqabeaadaGcaaqaaiaa % dIhaaWqabaaaaaGcbaWaaOaaaeaacaWG4baaleqaaaaakiaadsgaca % WG4baaleaacaaIXaaabaGaaGinaaqdcqGHRiI8aaaa!40FB! \int\limits_1^4 {\frac{{{e^{\sqrt x }}}}{{\sqrt x }}dx} \) trở thành
Tập xác định của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iGacYgacaGGVbGaai4zamaaBaaaleaadaWcaaqaaiaaigdaaeaa % caaIZaaaaaqabaGccaGGOaGaaGinaiabgkHiTiaadIhadaahaaWcbe % qaaiaaikdaaaGccaGGPaaaaa!4179! y = {\log _{\frac{1}{3}}}(4 - {x^2})\)
Cho hàm số \(y=f(x)\). Hàm số \(y=f'(x)\) có bảng biến thiên như hình vẽ
Số điểm cực trị của hàm số đã cho là
Với số thực dương \(a\) bất kì, giá trị của \(\log_2(8a)\) bằng