Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020 - Trường THPT chuyên Khoa Học Tự Nhiên

Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020 - Trường THPT chuyên Khoa Học Tự Nhiên

  • Hocon247

  • 50 câu hỏi

  • 90 phút

  • 172 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 176281

Giá trị của \(A_8^3\) là:

Xem đáp án

Giá trị của \(A_8^3\) là 336

Câu 2: Trắc nghiệm ID: 176282

Trong không gian Oxyz  cho \( \overrightarrow a = 2\overrightarrow j + 3\overrightarrow k \), tọa độ \(\overrightarrow a\) là

Xem đáp án

\(\overrightarrow a = 2\overrightarrow j + 3\overrightarrow k =2(0;1;0)+3(0;0;1)=(0;2;3)\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaMc8 % UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da % 9iaaikdacaGGOaGaaGimaiaacUdacaaIXaGaai4oaiaaicdacaGGPa % Gaey4kaSIaaG4maiaacIcacaaIWaGaai4oaiaaicdacaGG7aGaaGym % aiaacMcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca % aMc8UaaGPaVlabg2da9iaacIcacaaIWaGaai4oaiaaikdacaGG7aGa % aG4maiaacMcaaaaa!6227! \begin{array}{l} \,\,\,\, = 2(0;1;0) + 3(0;0;1)\\ \,\,\,\, = (0;2;3) \end{array}\)

Câu 3: Trắc nghiệm ID: 176283

Trong không gian \(Oxyz \), vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \((P):2x-y+1=0\)

Xem đáp án

Một vectơ pháp tuyến của mặt phẳng \((P):2x-y+1=0\) là 

\(\vec{n}=(2;-1;0)\)

 
Câu 4: Trắc nghiệm ID: 176284

Với số thực dương \(a\) bất kì, giá trị của \(\log_2(8a)\) bằng

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaaiIdacaWGHbGa % aiykaiabg2da9iGacYgacaGGVbGaai4zamaaBaaaleaacaaIYaaabe % aakiaaiIdacqGHRaWkciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOm % aaqabaGccaWGHbGaeyypa0JaaG4maiabgUcaRiGacYgacaGGVbGaai % 4zamaaBaaaleaacaaIYaaabeaakiaadggaaaa!4F17! {\log _2}(8a) = {\log _2}8 + {\log _2}a = 3 + {\log _2}a\)

Câu 5: Trắc nghiệm ID: 176285

Trong không gian \(Oxyz \) điểm nào dưới đây thuộc đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaGabaabaeqabaGaamiEaiabg2da9iaaikdacqGHRaWkcaWG0baa % baGaamyEaiabg2da9iabgkHiTiaaigdacqGHRaWkcaWG0baabaGaam % OEaiabg2da9iaaigdacqGHsislcaaIYaGaamiDaaaacaGL7baaaaa!483F! d:\left\{ \begin{array}{l} x = 2 + t\\ y = - 1 + t\\ z = 1 - 2t \end{array} \right.\)

Xem đáp án

Với \(t=0\) ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadIhacqGH9aqpcaaIYaaabaGaamyEaiabg2da9iabgkHiTiaa % igdaaeaacaWG6bGaeyypa0JaaGymaaaacaGL7baaaaa!4040! \left\{ \begin{array}{l} x = 2\\ y = - 1\\ z = 1 \end{array} \right.\).

Vậy điểm \(M(2;-1;1)\) là điểm thuộc đường thẳng \(d:\left\{ \begin{array}{l} x = 2 + t\\ y = - 1 + t\\ z = 1 - 2t \end{array} \right.\)

Câu 6: Trắc nghiệm ID: 176286

Trong không gian \(Oxyz\), phương trình mặt cầu tâm \(I(1;-2;1)\) và có bán kính bằng 2 là

Xem đáp án

Phương trình mặt cầu tâm \(I(1;-2;1)\) và bán kính bằng 2 là

\((x-1)^2+(y+2)^2+(z-1)^2=2^2\)

\((x-1)^2+(y+2)^2+(z-1)^2=4\)

Câu 7: Trắc nghiệm ID: 176287

Họ nguyên hàm của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaada % WcaaqaaiaaigdaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaa % ikdaaaGccaaIYaGaamiEaaaacaWGKbGaamiEaaWcbeqab0Gaey4kIi % paaaa!401E! \int {\frac{1}{{{{\cos }^2}2x}}dx} \)

Xem đáp án

\(\int {\frac{1}{{{{\cos }^2}2x}}dx} =\frac{1}{2}tan2x+C\)

Câu 8: Trắc nghiệm ID: 176288

Nghiệm của phương trình \(2^{x+1}=16\) là

Xem đáp án

TXĐ: \(D=\mathbb{R}\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIYa % WaaWbaaSqabeaacaWG4bGaey4kaSIaaGymaaaakiabg2da9iaaigda % caaI2aaabaGaeyi1HSTaaGOmamaaCaaaleqabaGaamiEaiabgUcaRi % aaigdaaaGccqGH9aqpcaaIYaWaaWbaaSqabeaacaaI0aaaaaGcbaGa % eyi1HSTaamiEaiabgUcaRiaaigdacqGH9aqpcaaI0aaabaGaeyi1HS % TaamiEaiabg2da9iaaiodaaaaa!5080! \begin{array}{l} \,\,\,\,\,\,\,{2^{x + 1}} = 16\\ \Leftrightarrow {2^{x + 1}} = {2^4}\\ \Leftrightarrow x + 1 = 4\\ \Leftrightarrow x = 3 \end{array}\)

Câu 9: Trắc nghiệm ID: 176289

Cho hàm số \(f(x)\) có bảng biến thiên như sau. 

Số nghiệm của phương trình  \(f(x)+1=0\) là

 

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabgUcaRiaaigdacqGH9aqpcaaIWaGaeyi1HSTa % amOzaiaacIcacaWG4bGaaiykaiabg2da9iabgkHiTiaaigdaaaa!44DC! f(x) + 1 = 0 \Leftrightarrow f(x) = - 1\)

Số nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabgUcaRiaaigdacqGH9aqpcaaIWaGaeyi1HSTa % amOzaiaacIcacaWG4bGaaiykaiabg2da9iabgkHiTiaaigdaaaa!44DC! f(x) + 1 = 0 \) chính là số giao điểm của đồ thị hàm số \(y=f(x)\) và \(y=-1\).

Từ bảng biến thiên suy ra số nghiệm của phương trình là 3

Câu 10: Trắc nghiệm ID: 176290

Cho hàm số \(y=f(x)\) có đồ thị như hình sau. Giá trị cực đại của hàm số đã cho là

Xem đáp án

Quan sát đồ thị hàm số ta thấy giá trị cực đại của hàm số là 3

Câu 11: Trắc nghiệm ID: 176291

Từ các chữ số \(0;1;2;3;4;5;6;7\) lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau

Xem đáp án

Số các số tự nhiên có 3 chữa số khác nhau được lập thành từ các chữ số \(0;1;2;3;4;5;6;7\) là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaDa % aaleaacaaI4aaabaGaaGOmaaaakiabgkHiTiaadgeadaqhaaWcbaGa % aG4naaqaaiaaikdaaaGccqGH9aqpcaaIYaGaaGyoaiaaisdaaaa!3F18! A_8^2 - A_7^2 = 294\)

 

Câu 12: Trắc nghiệm ID: 176292

Hàm số nào dưới đây có đồ thị như hình vẽ

Xem đáp án

Đồ thị là đồ thị của hàm số bậc 3 nên loại câu B, C

 Nhìn vào đồ thị ta thấy \( \mathop {\lim }\limits_{x \to + \infty } y = - \infty \) nên chọn câu D

Câu 13: Trắc nghiệm ID: 176293

Thể tích khối trụ có bán kính đáy và chiều cao bằng 2 là

Xem đáp án

Thể tích khối trụ có bán kính đáy và chiều cao bằng 2 là:\(V=\pi R^2h=\pi.4.2=8\pi\)

Câu 14: Trắc nghiệm ID: 176294

Cho cấp số cộng \((u_n)\) có \(u_1=1; u_2=3\). Công sai của cấp số cộng đã cho là

Xem đáp án

\((u_n)\) là cấp số cộng nên 

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1b % WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyDamaaBaaaleaacaaI % XaaabeaakiabgUcaRiaadsgaaeaacqGHshI3caWGKbGaeyypa0Jaam % yDamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadwhadaWgaaWcbaGa % aGymaaqabaGccqGH9aqpcaaIZaGaeyOeI0IaaGymaiabg2da9iaaik % daaaaa!4ADF! \begin{array}{l} {u_2} = {u_1} + d\\ \Rightarrow d = {u_2} - {u_1} = 3 - 1 = 2 \end{array}\)

Câu 16: Trắc nghiệm ID: 176296

Cho hàm số \(f(x)\) có bảng biến thiên 

Hàm số đã cho đồng biến trên khoảng

Xem đáp án

Từ bảng biến thiên ta có

\(f'(x)>0\Leftrightarrow x\in(1;3)\)

Vậy hàm số đã cho đồng biến trên \((1;3)\)

Câu 17: Trắc nghiệm ID: 176297

Cho hình nón có chiều cao \(h=2\) và góc ở đỉnh bằng \(60^0\). Bán kính đáy của hình nón đã cho bằng

Xem đáp án

Bán kính đáy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2 % da9iaadIgacaGGUaGaciiDaiaacggacaGGUbGaaGOnaiaaicdadaah % aaWcbeqaaiaaicdaaaGccqGH9aqpcaaIYaWaaOaaaeaacaaIZaaale % qaaaaa!4165! r = h.\tan {30^0} = 2\frac{1}{\sqrt {3}} =\frac{2\sqrt{3}}{3}\)

Câu 18: Trắc nghiệm ID: 176298

Phương trình \(\log_2(x-3)=3\) có nghiệm là

Xem đáp án

ĐK: \((x-3)>0\Leftrightarrow x>3\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGSb % Gaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiEaiab % gkHiTiaaiodacaGGPaGaeyypa0JaaG4maaqaaiabgsDiBlaadIhacq % GHsislcaaIZaGaeyypa0JaaGOmamaaCaaaleqabaGaaG4maaaaaOqa % aiabgsDiBlaadIhacqGHsislcaaIZaGaeyypa0JaaGioaaqaaiabgs % DiBlaadIhacqGH9aqpcaaIXaGaaGymaaaaaa!53DA! \begin{array}{l} \,\,\,\,\,\,\,\,{\log _2}(x - 3) = 3\\ \Leftrightarrow x - 3 = {2^3}\\ \Leftrightarrow x - 3 = 8\\ \Leftrightarrow x = 11\,\mathrm{(nhận)} \end{array}\)

Câu 19: Trắc nghiệm ID: 176299

Môđun của số phức \(z=4-3i\) là

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6baacaGLhWUaayjcSdGaeyypa0ZaaOaaaeaacaaI0aWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSIaaiikaiabgkHiTiaaiodacaGGPaWaaW % baaSqabeaacaaIYaaaaaqabaGccqGH9aqpcaaI1aaaaa!4378! \left| z \right| = \sqrt {{4^2} + {{( - 3)}^2}} = 5\)

Câu 20: Trắc nghiệm ID: 176300

\(\lim{\frac{2n+3}{n+1}}\) bằng

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM % gacaGGTbWaaSaaaeaacaaIYaGaamOBaiabgUcaRiaaiodaaeaacaWG % UbGaey4kaSIaaGymaaaacqGH9aqpciGGSbGaaiyAaiaac2gadaWcaa % qaaiaaikdacqGHRaWkdaWcaaqaaiaaiodaaeaacaWGUbaaaaqaaiaa % igdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaaaacqGH9aqpca % aIYaaaaa!4B12! \lim \frac{{2n + 3}}{{n + 1}} = \lim \frac{{2 + \frac{3}{n}}}{{1 + \frac{1}{n}}} = 2\)

Câu 21: Trắc nghiệm ID: 176301

Cho hình lăng trụ \(ABCD.A'B'C'D'\) có thể tích bằng \(a^3\). Thể tích khối chóp \(A'.ABC\) là

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGbbGaai4jaiaac6cacaWGbbGaamOqaiaadoeaaeqaaOGa % eyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGwbWaaSbaaSqaai % aadgeacaGGNaGaamyqaiaadkeacaWGdbGaamiraaqabaGccqGH9aqp % daWcaaqaaiaaigdaaeaacaaIYaaaaiaac6cadaWcaaqaaiaaigdaae % aacaaIZaaaaiaadAfadaWgaaWcbaGaamyqaiaadkeacaWGdbGaamir % aiaac+cacaWGbbGaai4jaiaadkeacaGGNaGaam4qaiaacEcacaWGeb % Gaai4jaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI2aaaaiaa % dggadaahaaWcbeqaaiaaiodaaaaaaa!577D! {V_{A'.ABC}} = \frac{1}{2}{V_{A'ABCD}} = \frac{1}{2}.\frac{1}{3}{V_{ABCD.A'B'C'D'}} = \frac{1}{6}{a^3}\)

Câu 22: Trắc nghiệm ID: 176302

Cho hàm số \(y=f(x)\). Hàm số \(y=f'(x)\) có bảng biến thiên như hình vẽ 

Số điểm cực trị của hàm số đã cho là

Xem đáp án

Nhìn vào đồ thị hàm số ta thấy khi đi qua 4 điểm \(x=-1; x=0; x=1; x=2\) thì \(f'(x)\) đổi dấu

Vậy hàm số có 4 điểm cực trị.

Câu 23: Trắc nghiệm ID: 176303

Trong không gian \(Oxyz\), mặt cầu \((S): x^2+y^2+z^2-4x+4y+4=0\) có bán kính bằng

Xem đáp án

Mặt cầu có tâm \(I(2;-2;0)\)

Bán kính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2 % da9maakaaabaGaaGOmamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa % cIcacqGHsislcaaIYaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgU % caRiaaicdadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aaaleqa % aOGaeyypa0JaaGimaaaa!4475! R = \sqrt {{2^2} + {{( - 2)}^2} + {0^2} - 4} = 2\)

Câu 24: Trắc nghiệm ID: 176304

Cho hình lập phương \(ABCD.A'B'C'D'\). Góc giữa hai mặt phẳng \((ABCD)\) và \((A'D'CB)\) là

Xem đáp án

BC là giao tuyến của \((ABCD)\) và \((A'D'BC)\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadkeacaWGdbGaeyyPI4LaamyqaiaacEcacaWGcbGaeyOGIWSa % aiikaiaadgeacaGGNaGaamiraiaacEcacaWGcbGaam4qaiaacMcaae % aacaWGcbGaam4qaiabgwQiEjaadgeacaWGcbGaeyOGIWSaaiikaiaa % dgeacaWGcbGaam4qaiaadseacaGGPaaaaiaawUhaaaaa!4F95! \left\{ \begin{array}{l} BC \bot A'B \subset (A'D'BC)\\ BC \bot AB \subset (ABCD) \end{array} \right.\)

Vậy góc giữa hai mặt phẳng \((ABCD)\) và \((A'D'BC)\) là \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqiaa % qaaiaadgeacaGGNaGaamOqaiaadgeaaiaawkWaaaqaaaaaaa!39BA! \begin{array}{l} \widehat {A'BA}\\ \end{array}\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGG0b % Gaaiyyaiaac6gadaqiaaqaaiaadgeacaGGNaGaamOqaiaadgeaaiaa % wkWaaiabg2da9maalaaabaGaamyqaiaadgeacaGGNaaabaGaamyqai % aadkeaaaGaeyypa0JaaGymaaqaamaaHaaabaGaamyqaiaacEcacaWG % cbGaamyqaaGaayPadaGaeyypa0JaaGinaiaaiwdadaahaaWcbeqaai % aaicdaaaaaaaa!4A50! \begin{array}{l} \tan \widehat {A'BA} = \frac{{AA'}}{{AB}} = 1\\ \Rightarrow\widehat {A'BA} = {45^0} \end{array}\)

Vậy góc giữa hai mặt phẳng là \(45^0\)

Câu 25: Trắc nghiệm ID: 176305

Giá trị nhỏ nhất của hàm số \(y=\frac{x^2+x+4}{x+1}\) trên đoạn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca % aIWaGaai4oaiaaikdaaiaawUfacaGLDbaaaaa!3A1A! \left[ {0;2} \right]\) bằng

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG5b % Gaeyypa0ZaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4k % aSIaamiEaiabgUcaRiaaisdaaeaacaWG4bGaey4kaSIaaGymaaaacq % GHshI3caWG5bGaai4jaiabg2da9maalaaabaGaamiEamaaCaaaleqa % baGaaGOmaaaakiabgUcaRiaaikdacaWG4bGaeyOeI0IaaG4maaqaai % aacIcacaWG4bGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikda % aaaaaaGcbaGaamyEaiaacEcacqGH9aqpcaaIWaGaeyi1HS9aaSaaae % aacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIha % cqGHsislcaaIZaaabaGaaiikaiaadIhacqGHRaWkcaaIXaGaaiykam % aaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaaIWaGaeyi1HS9aamqa % aqaabeqaaiaadIhacqGH9aqpcaaIXaaabaGaamiEaiabg2da9iabgk % HiTiaaiodaaaGaay5waaaabaGaamiEaiabgIGiolaabUfacaaIWaGa % ai4oaiaaikdacaGGDbGaeyO0H4TaamiEaiabg2da9iaaigdaaeaaca % WG5bGaaiikaiaaicdacaGGPaGaeyypa0JaaGinaaqaaiaadMhacaGG % OaGaaGymaiaacMcacqGH9aqpcaaIZaaabaGaamyEaiaacIcacaaIYa % Gaaiykaiabg2da9maalaaabaGaaGymaiaaicdaaeaacaaIZaaaaaaa % aa!8860! \begin{array}{l} y = \frac{{{x^2} + x + 4}}{{x + 1}} \Rightarrow y' = \frac{{{x^2} + 2x - 3}}{{{{(x + 1)}^2}}}\\ \mathrm{Cho}\,y' = 0 \Leftrightarrow \frac{{{x^2} + 2x - 3}}{{{{(x + 1)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = - 3 \end{array} \right.\\ \mathrm{Do}\,x \in {\rm{[}}0;2] \Rightarrow x = 1\\ y(0) = 4\\ y(1) = 3\\ y(2) = \frac{{10}}{3} \end{array}\)

Vậy giá trị nhỏ nhất của hàm số trên đoạn \([0;2]\) là 3

Câu 26: Trắc nghiệm ID: 176306

trong không gian \(Oxyz\) cho hai điểm \(A(0;1;2), B(2;2;1)\). Phương trình mặt phẳng qua A và vuông góc với AB là

Xem đáp án

Mặt phẳng vuông góc với AB nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGbbGaamOqaaGaay51GaGaeyypa0JaaiikaiaaikdacaGG7aGaaGym % aiaacUdacqGHsislcaaIXaGaaiykaaaa!4030! \overrightarrow {AB} = (2;1; - 1)\) là một vectơ pháp tuyển của mặt phẳng

Phương trình mặt phẳng qua A và vuông góc với AB:

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIYa % GaaiikaiaadIhacqGHsislcaaIWaGaaiykaiabgUcaRiaacIcacaWG % 5bGaeyOeI0IaaGymaiaacMcacqGHsislcaGGOaGaamOEaiabgkHiTi % aaikdacaGGPaGaeyypa0JaaGimaaqaaiabgsDiBlaaikdacaWG4bGa % ey4kaSIaamyEaiabgkHiTiaadQhacqGHRaWkcaaIXaGaeyypa0JaaG % imaaaaaa!5180! \begin{array}{l} 2(x - 0) + (y - 1) - (z - 2) = 0\\ \Leftrightarrow 2x + y - z + 1 = 0 \end{array}\)

Câu 27: Trắc nghiệm ID: 176307

Biết rằng phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaamiEaiabgUcaRiGacYga % caGGVbGaai4zamaaBaaaleaacaaIZaaabeaakiaadIhacqGH9aqpca % aIXaGaey4kaSIaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaikdaaeqa % aOGaamiEaiaac6caciGGSbGaai4BaiaacEgadaWgaaWcbaGaaG4maa % qabaGccaWG4baaaa!4D28! {\log _2}x + {\log _3}x = 1 + {\log _2}x.{\log _3}x\) có hai nghiệm \(x_1; x_2\). Giá trị của \(x_1^2+x_2^2\) là

Xem đáp án

ĐK:\(x>0\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGSb % Gaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGccaWG4bGaey4kaSIa % ciiBaiaac+gacaGGNbWaaSbaaSqaaiaaiodaaeqaaOGaamiEaiabg2 % da9iaaigdacqGHRaWkciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOm % aaqabaGccaWG4bGaaiOlaiGacYgacaGGVbGaai4zamaaBaaaleaaca % aIZaaabeaakiaadIhaaeaacqGHuhY2ciGGSbGaai4BaiaacEgadaWg % aaWcbaGaaGOmaaqabaGccaWG4bGaeyOeI0IaaGymaiabg2da9iGacY % gacaGGVbGaai4zamaaBaaaleaacaaIZaaabeaakiaadIhacaGGUaGa % aiikaiGacYgacaGGVbGaai4zamaaBaaaleaacaaIYaaabeaakiaadI % hacqGHsislcaaIXaGaaiykaaqaaiabgsDiBlaacIcaciGGSbGaai4B % aiaacEgadaWgaaWcbaGaaGOmaaqabaGccaWG4bGaeyOeI0IaaGymai % aacMcacqGHsislciGGSbGaai4BaiaacEgadaWgaaWcbaGaaG4maaqa % baGccaWG4bGaaiOlaiaacIcaciGGSbGaai4BaiaacEgadaWgaaWcba % GaaGOmaaqabaGccaWG4bGaeyOeI0IaaGymaiaacMcacqGH9aqpcaaI % WaaabaGaeyi1HSTaaiikaiGacYgacaGGVbGaai4zamaaBaaaleaaca % aIYaaabeaakiaadIhacqGHsislcaaIXaGaaiykamaabmaabaGaaGym % aiabgkHiTiGacYgacaGGVbGaai4zamaaBaaaleaacaaIZaaabeaaki % aadIhaaiaawIcacaGLPaaacqGH9aqpcaaIWaaabaGaeyi1HS9aamqa % aqaabeqaaiGacYgacaGGVbGaai4zamaaBaaaleaacaaIYaaabeaaki % aadIhacqGHsislcaaIXaGaeyypa0JaaGimaaqaaiaaigdacqGHsisl % ciGGSbGaai4BaiaacEgadaWgaaWcbaGaaG4maaqabaGccaWG4bGaey % ypa0JaaGimaaaacaGLBbaaaeaacqGHuhY2daWabaabaeqabaGaciiB % aiaac+gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaamiEaiabg2da9i % aaigdaaeaaciGGSbGaai4BaiaacEgadaWgaaWcbaGaaG4maaqabaGc % caWG4bGaeyypa0JaaGymaaaacaGLBbaaaeaacqGHuhY2daWabaabae % qabaGaamiEaiabg2da9iaaikdaaeaacaWG4bGaeyypa0JaaG4maaaa % caGLBbaaaaaa!BEE0! \begin{array}{l} {\log _2}x + {\log _3}x = 1 + {\log _2}x.{\log _3}x\\ \Leftrightarrow {\log _2}x - 1 = {\log _3}x.({\log _2}x - 1)\\ \Leftrightarrow ({\log _2}x - 1) - {\log _3}x.({\log _2}x - 1) = 0\\ \Leftrightarrow ({\log _2}x - 1)\left( {1 - {{\log }_3}x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\log _2}x - 1 = 0\\ 1 - {\log _3}x = 0 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} {\log _2}x = 1\\ {\log _3}x = 1 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 3 \end{array} \right. \end{array}\)

Vậy \(x_1^2+x_2^2=13\)

Câu 28: Trắc nghiệm ID: 176308

Môđun của số phức \(z=(1-2i)(1+i)^2\) bằng

Xem đáp án

\(|z|=|(1-2i)(1+i)^2|=|1-2i|.|(1+i)^2|=\sqrt{5}.|1+i|^2=2\sqrt{5}\)

Câu 29: Trắc nghiệm ID: 176309

Cho số phức \(z=3-2i\). Điểm biểu diễn hình học của số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Daiabg2 % da9iaadQhacqGHRaWkcaWGPbWaa0aaaeaacaWG6baaaaaa!3BD2! {\rm{w}} = z + i\overline z \)  có tọa độ

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG6b % Gaeyypa0JaaG4maiabgkHiTiaaikdacaWGPbGaeyO0H49aa0aaaeaa % caWG6baaaiabg2da9iaaiodacqGHRaWkcaaIYaGaamyAaaqaaiaabE % hacqGH9aqpcaWG6bGaey4kaSIaamyAamaanaaabaGaamOEaaaacqGH % 9aqpcaGGOaGaaG4maiabgkHiTiaaikdacaWGPbGaaiykaiabgUcaRi % aadMgacaGGOaGaaG4maiabgUcaRiaaikdacaWGPbGaaiykaiabg2da % 9iaaigdacqGHRaWkcaWGPbaaaaa!58A4! \begin{array}{l} z = 3 - 2i \Rightarrow \overline z = 3 + 2i\\ {\rm{w}} = z + i\overline z = (3 - 2i) + i(3 + 2i) = 1 + i \end{array}\)

Vậy điểm biểu diễn hình học của số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Daaaa!36ED! {\rm{w}}\) là \((1;1)\)

Câu 30: Trắc nghiệm ID: 176310

Cho hàm số \(y=f(x)\) có bảng biến thiên

Số nghiệm phương trình \(2f(x)-5=0\) là

Xem đáp án

Ta có:

 \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGYa % GaaeOzaiaabIcacaqG4bGaaeykaiaab2cacaqG1aGaaeypaiaabcda % aeaacqGHuhY2caqGMbGaaeikaiaabIhacaqGPaGaaeypamaalaaaba % GaaGynaaqaaiaaikdaaaaaaaa!44A7! \begin{array}{l} {\rm{2f(x) - 5 = 0}}\\ \Leftrightarrow {\rm{f(x) = }}\frac{5}{2} \end{array}\)

Số nghiệm của phương trình \(2f(x)-5=0\) là số giao điểm của đồ thị hàm số \(y=f(x)\) và đồ thị hàm số \(y=\frac{5}{2}\)

do \(1<\frac{5}{2}<3\) nên từ bảng biến thiên suy ra phương trình có 4 nghiệm phân biệt

Câu 31: Trắc nghiệm ID: 176311

Cho mặt cầu có diện tích bằng \(16\pi\). Thể tích khối cầu giới hạn bởi mặt cầu đó là

Xem đáp án

Gọi \(r\,(r>0)\) là bán kính mặt cầu. Ta có:

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb % Gaeyypa0JaaGymaiaaiAdacqaHapaCcqGHuhY2caaI0aGaeqiWdaNa % amOCamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaigdacaaI2aGaeq % iWdahabaGaeyO0H4TaamOCaiabg2da9iaaikdaaaaa!4B25! \begin{array}{l} S = 16\pi \Leftrightarrow 4\pi {r^2} = 16\pi \\ \Rightarrow r = 2 \end{array}\)

Thể tích khối cầu:

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 % da9maalaaabaGaaGinaaqaaiaaiodaaaGaeqiWdaNaamOCamaaCaaa % leqabaGaaG4maaaakiabg2da9maalaaabaGaaGinaaqaaiaaiodaaa % GaeqiWdaNaaGioaiabg2da9maalaaabaGaaG4maiaaikdacqaHapaC % aeaacaaIZaaaaaaa!4720! V = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi 8 = \frac{{32\pi }}{3}\)

Câu 32: Trắc nghiệm ID: 176312

Trong không gian \(Oxyz\), mặt phẳng đi qua \(A(1;0;-2)\) và vuông góc với OA có phương trình:

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGpbGaamyqaaGaay51GaGaeyypa0JaaiikaiaaigdacaGG7aGaaGim % aiaacUdacqGHsislcaaIYaGaaiykaaaa!403C! \overrightarrow {OA} = (1;0; - 2)\). Do mặt phẳng vuông góc với OA nên \(\vec{OA}\) là một vectơ pháp tuyến của mặt phẳng

Phương trình mặt phẳng qua A và vuông góc với OA có dạng

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaGGOa % GaamiEaiabgkHiTiaaigdacaGGPaGaey4kaSIaaGimaiaacIcacaWG % 5bGaeyOeI0IaaGimaiaacMcacqGHsislcaaIYaGaaiikaiaadQhacq % GHRaWkcaaIYaGaaiykaiabg2da9iaaicdaaeaacqGHuhY2caWG4bGa % eyOeI0IaaGOmaiaadQhacqGHsislcaaI1aGaeyypa0JaaGimaaaaaa!505E! \begin{array}{l} (x - 1) + 0(y - 0) - 2(z + 2) = 0\\ \Leftrightarrow x - 2z - 5 = 0 \end{array}\)

Câu 33: Trắc nghiệm ID: 176313

Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbGaaiikaiaadIhacaGGPaGaamizaiaadIhacqGH9aqpcqGHsisl % caaIXaaaleaacaaIWaaabaGaaGinaaqdcqGHRiI8aaaa!41A9! \int\limits_0^4 {f(x)dx = - 1} \). Tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbGaaiikaiaaisdacaWG4bGaaiykaiaadsgacaWG4baaleaacaaI % WaaabaGaaGymaaqdcqGHRiI8aaaa!3FB6! \int\limits_0^1 {f(4x)dx} \) bằng

Xem đáp án

 

Đặt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 % da9iaaisdacaWG4bGaeyO0H4TaamizaiaadshacqGH9aqpcaaI0aGa % amizaiaadIhacqGHshI3caWGKbGaamiEaiabg2da9maalaaabaGaam % izaiaadshaaeaacaaI0aaaaaaa!498F! t = 4x \Rightarrow dt = 4dx \Rightarrow dx = \frac{{dt}}{4}\)

Đổi cận:

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b % Gaeyypa0JaaGimaiabgkDiElaadshacqGH9aqpcaaIWaaabaGaamiE % aiabg2da9iaaigdacqGHshI3caWG0bGaeyypa0JaaGinaaaaaa!45A5! \begin{array}{l} x = 0 \Rightarrow t = 0\\ x = 1 \Rightarrow t = 4 \end{array}\)
Khi đó 

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbGaaiikaiaaisdacaWG4bGaaiykaiaadsgacaWG4baaleaacaaI % WaaabaGaaGymaaqdcqGHRiI8aOGaeyypa0Zaa8qCaeaacaWGMbGaai % ikaiaadshacaGGPaWaaSaaaeaacaWGKbGaamiDaaqaaiaaisdaaaGa % eyypa0ZaaSaaaeaacaaIXaaabaGaaGinaaaaaSqaaiaaicdaaeaaca % aI0aaaniabgUIiYdGcdaWdXbqaaiaadAgacaGGOaGaamiDaiaacMca % caWGKbGaamiDaaWcbaGaaGimaaqaaiaaisdaa0Gaey4kIipakiabg2 % da9maalaaabaGaeyOeI0IaaGymaaqaaiaaisdaaaaaaa!59B3! \int\limits_0^1 {f(4x)dx} = \int\limits_0^4 {f(t)\frac{{dt}}{4} = \frac{1}{4}} \int\limits_0^4 {f(t)dt} = \frac{{ - 1}}{4}\)

Câu 34: Trắc nghiệm ID: 176314

Cho hình chóp \(S.ABC\)có thể tích \(70a^3\). Gọi M, N là accs điểm trên SB, SC sao cho \(SM=\frac{2}{3}SB, SN=\frac{4}{5}SC\). Thể tích khối chóp \(S.AMN\) bằng

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb % Gaamytaiabg2da9maalaaabaGaaGOmaaqaaiaaiodaaaGaam4uaiaa % dkeacqGHshI3daWcaaqaaiaadofacaWGcbaabaGaam4uaiaad2eaaa % Gaeyypa0ZaaSaaaeaacaaIZaaabaGaaGOmaaaaaeaacaWGtbGaamOt % aiabg2da9maalaaabaGaaGinaaqaaiaaiwdaaaGaam4uaiaadoeacq % GHshI3daWcaaqaaiaadofacaWGdbaabaGaam4uaiaad6eaaaGaeyyp % a0ZaaSaaaeaacaaI1aaabaGaaGinaaaaaaaa!5240! \begin{array}{l} SM = \frac{2}{3}SB \Rightarrow \frac{{SB}}{{SM}} = \frac{3}{2}\\ SN = \frac{4}{5}SC \Rightarrow \frac{{SC}}{{SN}} = \frac{5}{4} \end{array}\)

Ta có:

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa % qaaiaadAfadaWgaaWcbaGaam4uaiaac6cacaWGbbGaamOqaiaadoea % aeqaaaGcbaGaamOvamaaBaaaleaacaWGtbGaaiOlaiaadgeacaWGnb % GaamOtaaqabaaaaOGaeyypa0ZaaSaaaeaacaWGtbGaamyqaaqaaiaa % dofacaWGbbaaaiaac6cadaWcaaqaaiaadofacaWGcbaabaGaam4uai % aad2eaaaGaaiOlamaalaaabaGaam4uaiaadoeaaeaacaWGtbGaamOt % aaaacqGH9aqpcaaIXaGaaiOlamaalaaabaGaaG4maaqaaiaaikdaaa % GaaiOlamaalaaabaGaaGynaaqaaiaaisdaaaGaeyypa0ZaaSaaaeaa % caaIXaGaaGynaaqaaiaaiIdaaaaabaGaeyO0H4TaamOvamaaBaaale % aacaWGtbGaaiOlaiaadgeacaWGnbGaamOtaaqabaGccqGH9aqpcaWG % wbWaaSbaaSqaaiaadofacaGGUaGaamyqaiaadkeacaWGdbaabeaaki % aacQdadaWcaaqaaiaaigdacaaI1aaabaGaaGioaaaacqGH9aqpcaaI % 3aGaaGimaiaadggadaahaaWcbeqaaiaaiodaaaGccaGG6aWaaSaaae % aacaaIXaGaaGynaaqaaiaaiIdaaaGaeyypa0ZaaSaaaeaacaaIXaGa % aGymaiaaikdacaWGHbWaaWbaaSqabeaacaaIZaaaaaGcbaGaaG4maa % aaaaaa!739E! \begin{array}{l} \frac{{{V_{S.ABC}}}}{{{V_{S.AMN}}}} = \frac{{SA}}{{SA}}.\frac{{SB}}{{SM}}.\frac{{SC}}{{SN}} = 1.\frac{3}{2}.\frac{5}{4} = \frac{{15}}{8}\\ \Rightarrow {V_{S.AMN}} = {V_{S.ABC}}:\frac{{15}}{8} = 70{a^3}:\frac{{15}}{8} = \frac{{112{a^3}}}{3} \end{array}\)

Câu 35: Trắc nghiệm ID: 176315

Hàm số \(f(x)=x^3-3x^2+2\) đồng biến trên khoảng nào dưới đây

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb % GaaiikaiaadIhacaGGPaGaeyypa0JaamiEamaaCaaaleqabaGaaG4m % aaaakiabgkHiTiaaiodacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey % 4kaSIaaGOmaiabgkDiElaadAgacaGGNaGaaiikaiaadIhacaGGPaGa % eyypa0JaaG4maiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislca % aI2aGaamiEaaqaaiaadAgacaGGNaGaaiikaiaadIhacaGGPaGaeyyp % a0JaaGimaiabgsDiBlaaiodacaWG4bWaaWbaaSqabeaacaaIYaaaaO % GaeyOeI0IaaGOnaiaadIhacqGH9aqpcaaIWaGaeyi1HS9aamqaaqaa % beqaaiaadIhacqGH9aqpcaaIWaaabaGaamiEaiabg2da9iaaigdaae % aacaWG4bGaeyypa0JaeyOeI0IaaGymaaaacaGLBbaaaaaa!69B4! \begin{array}{l} f(x) = {x^3} - 3{x^2} + 2 \Rightarrow f'(x) = 3{x^2} - 6x\\ f'(x) = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right. \end{array}\)

Để hàm số đồng biến thì \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cacaGGOaGaamiEaiaacMcacqGH+aGpcaaIWaGaeyi1HS9aamqaaqaa % beqaaiaadIhacqGH8aapcaaIWaaabaGaamiEaiabg6da+iaaikdaaa % Gaay5waaaaaa!447B! f'(x) > 0 \Leftrightarrow \left[ \begin{array}{l} x < 0\\ x > 2 \end{array} \right.\)

Vậy hàm số đồng biến trên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgk % HiTiabg6HiLkaacUdacaaIWaGaaiykaiabgQIiilaacIcacaaIYaGa % ai4oaiabgUcaRiabg6HiLkaacMcaaaa!41EA! ( - \infty ;0) \cup (2; + \infty )\)

Câu 36: Trắc nghiệm ID: 176316

Tập xác định của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iGacYgacaGGVbGaai4zamaaBaaaleaadaWcaaqaaiaaigdaaeaa % caaIZaaaaaqabaGccaGGOaGaaGinaiabgkHiTiaadIhadaahaaWcbe % qaaiaaikdaaaGccaGGPaaaaa!4179! y = {\log _{\frac{1}{3}}}(4 - {x^2})\)

Xem đáp án

ĐK: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaI0a % GaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiabg6da+iaaicda % aeaacqGHsislcaaIYaGaeyipaWJaamiEaiabgYda8iaaikdaaaaa!40C1! \begin{array}{l} 4 - {x^2} > 0\\ \Leftrightarrow - 2 < x < 2 \end{array}\)

Vậy tập xác định của hàm số là \((-2;2)\)

Câu 38: Trắc nghiệm ID: 176318

Với số thực dương \(a,b,c\) thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaamyyaiabg2da9iaadoga % aaa!3C89! {\log _2}a = c\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaamOyaiabg2da9iaaikda % caWGJbaaaa!3D46! {\log _2}b = 2c\). Giá trị của a bằng

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa % qaaiGacYgacaGGVbGaai4zamaaBaaaleaacaaIYaaabeaakiaadkga % aeaaciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGccaWGHb % aaaiabg2da9maalaaabaGaaGOmaiaadogaaeaacaaIYaaaaaqaaiab % gsDiBlGacYgacaGGVbGaai4zamaaBaaaleaacaWGHbaabeaakiaadk % gacqGH9aqpcaaIYaaabaGaeyi1HSTaamOyaiabg2da9iaadggadaah % aaWcbeqaaiaaikdaaaaakeaacqGHuhY2caWGHbGaeyypa0ZaaOaaae % aacaWGIbaaleqaaaaaaa!5730! \begin{array}{l} \,\,\,\,\,\,\frac{{{{\log }_2}b}}{{{{\log }_2}a}} = \frac{{2c}}{2}\\ \Leftrightarrow {\log _a}b = 2\\ \Leftrightarrow b = {a^2}\\ \Leftrightarrow a = \sqrt b \end{array}\)

Câu 39: Trắc nghiệm ID: 176319

Gọi  \(x_1; x_2\) là hai điểm cực trị của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaiodaaaGa % amiEamaaCaaaleqabaGaaG4maaaakiabgUcaRiaadIhadaahaaWcbe % qaaiaaikdaaaGccqGHsislcaaIZaGaamiEaiabgUcaRiaaigdaaaa!44C9! f(x) = \frac{1}{3}{x^3} + {x^2} - 3x + 1\). giá trị của \(x_1^3+x_2^3\) bằng

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa % aaaaWdbiaadAgacaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaWdaeaa % peGaaGymaaWdaeaapeGaaG4maaaacaWG4bWdamaaCaaaleqabaWdbi % aaiodaaaGccqGHRaWkcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGc % cqGHsislcaaIZaGaamiEaiabgUcaRiaaigdaaeaacaWGMbGaai4jai % aacIcacaWG4bGaaiykaiabg2da9iaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaaIYaGaamiEaiabgkHiTiaaiodacqGH9aqpcaaIWa % Gaeyi1HS9aamqaaqaabeqaaiaadIhadaWgaaWcbaGaaGymaaqabaGc % cqGH9aqpcqGHsislcaaIZaaabaGaamiEamaaBaaaleaacaaIYaaabe % aakiabg2da9iaaigdaaaGaay5waaaaaaa!5DFF! \begin{array}{l} f(x) = \frac{1}{3}{x^3} + {x^2} - 3x + 1\\ f'(x) = {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l} {x_1} = - 3\\ {x_2} = 1 \end{array} \right. \end{array}\)

Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aacaWG4bWaa0baaSqaaiaaigdaaeaacaaIZaaaaOGaey4kaSIaamiE % amaaDaaaleaacaaIYaaabaGaaG4maaaakiabg2da9iabgkHiTiaaik % dacaaI2aaaaa!3FBD! x_1^3 + x_2^3 = - 26\)

Câu 40: Trắc nghiệm ID: 176320

Số đường tiệm cận của đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % igdaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmai % aadIhacqGHsislcaaIZaaaaaaa!41DF! y = \frac{{{x^2} - 1}}{{{x^2} - 2x - 3}}\) là

Xem đáp án

ĐK: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGeb % Gaeyypa0JaeSyhHeQaaiixaiaabUhacqGHsislcaaIXaGaai4oaiaa % iodacaGG9baabaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadI % hacqGHsgIRcqGHRaWkcqGHEisPaeqaaOGaamyEaiabg2da9iaaigda % caGG7aGaaGPaVpaaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4b % GaeyOKH4QaeyOeI0IaeyOhIukabeaakiaadMhacqGH9aqpcaaIXaaa % aaa!57AF! \begin{array}{l} D =\mathbb{R} \backslash {\rm{\{ }} - 1;3\} \\ \end{array}\)

\(\mathrm{Ta\,có}\mathop {\lim }\limits_{x \to + \infty } y = 1;\,\mathop {\lim }\limits_{x \to - \infty } y = 1\) nên \(y=1\) là đường tiệm cận ngang của đồ thị hàm số.

Lại có:

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaGGOaGaeyOeI0Ia % aGymaiaacMcadaahaaadbeqaaiabgUcaRaaaaSqabaGccaWG5bGaey % ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGG7aGaaGPaVpaaxaba % baGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4Qaaiikaiabgk % HiTiaaigdacaGGPaWaaWbaaWqabeaacqGHsislaaaaleqaaOGaamyE % aiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaaaaa!5390! \mathop {\lim }\limits_{x \to {{( - 1)}^ + }} y = \frac{1}{2};\,\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} y = \frac{1}{2}\) nên \(x=-1\) không phải là tiềm cận đứng của đồ thị hàm số

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIZaWaaWbaaWqa % beaacqGHRaWkaaaaleqaaOGaamyEaiabg2da9iabgUcaRiabg6HiLk % aacUdacaaMc8+aaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIha % cqGHsgIRcaaIZaWaaWbaaWqabeaacqGHsislaaaaleqaaOGaamyEai % abg2da9iabgkHiTiabg6HiLcaa!50AB! \mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\,\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty\) nên \(x=3\) là tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số có 2 đường tiệm cận

Câu 41: Trắc nghiệm ID: 176321

Gọi \(z_2, z_2\) là hai nghiệm phức của phương trình \(z^2-2z+2=0\). Giá trị của \(z_1^4+z_2^4\) là

 

Xem đáp án

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG6b % WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadQhacqGHRaWk % caaIYaGaeyypa0JaaGimaiabgsDiBpaadeaaeaqabeaacaWG6bWaaS % baaSqaaiaaigdaaeqaaOGaeyypa0JaaGymaiabgUcaRiaadMgaaeaa % caWG6bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGymaiabgkHiTi % aadMgaaaGaay5waaaabaGaamOEamaaDaaaleaacaaIXaaabaGaaGin % aaaakiabgUcaRiaadQhadaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccq % GH9aqpcaGGOaGaaGymaiabgUcaRiaadMgacaGGPaWaaWbaaSqabeaa % caaI0aaaaOGaey4kaSIaaiikaiaaigdacqGHsislcaWGPbGaaiykam % aaCaaaleqabaGaaGinaaaakiabg2da9iabgkHiTiaaiIdaaaaa!60F9! \begin{array}{l} {z^2} - 2z + 2 = 0 \Leftrightarrow \left[ \begin{array}{l} {z_1} = 1 + i\\ {z_2} = 1 - i \end{array} \right.\\ \mathrm{Khi\,đó}\,z_1^4 + z_2^4 = {(1 + i)^4} + {(1 - i)^4} = - 8 \end{array}\)

Câu 42: Trắc nghiệm ID: 176322

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh a,  cạnh bên \(SA \bot (ABCD)\) và \(SA=a\). Khoảng cách từ A đến mặt phẳng \((SBD)\) là

Xem đáp án

Gọi \(O = AC \cap BD\)

Kẻ \(AH \bot SO \Rightarrow AH \bot \left( {SBD} \right) \Rightarrow d\left( {A,\left( {SBD} \right)} \right) = AH\)

Vì SA, AB, AD đôi một vuông góc nên ta có:

\(\frac{1}{{H{A^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} = \frac{3}{{{a^2}}} \Rightarrow AH = \frac{{a\sqrt 3 }}{3}\)

Câu 43: Trắc nghiệm ID: 176323

Với phép biến đổi \(u=\sqrt x\), tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaSaaaeaacaWGLbWaaWbaaSqabeaadaGcaaqaaiaa % dIhaaWqabaaaaaGcbaWaaOaaaeaacaWG4baaleqaaaaakiaadsgaca % WG4baaleaacaaIXaaabaGaaGinaaqdcqGHRiI8aaaa!40FB! \int\limits_1^4 {\frac{{{e^{\sqrt x }}}}{{\sqrt x }}dx} \) trở thành

 

Xem đáp án

Đặt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG1bGaeyypa0ZaaOaaa8aabaWdbiaadIhaaSqabaGccqGHshI3 % caWG1bWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamiEaiabgkDiEl % aaikdacaWG1bGaamizaiaadwhacqGH9aqpcaWGKbGaamiEaaaa!4883! % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aacaWG1bGaeyypa0ZaaOaaaeaacaWG4baaleqaaOGaeyO0H4Taamiz % aiaadwhacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaWaaOaaaeaaca % WG4baaleqaaaaakiaadsgacaWG4bGaeyO0H4TaaGOmaiaadsgacaWG % 1bGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaWG4baaleqaaa % aakiaadsgacaWG4baaaa!4CDF! u = \sqrt x \Rightarrow du = \frac{1}{{2\sqrt x }}dx \Rightarrow 2du = \frac{1}{{\sqrt x }}dx\)

Đổi cận

\(\begin{array}{c|c} x & 1 \,\,\,\,\,\,\,\,\,\,4 \\ \hline u & 1\,\,\,\,\,\,\,\,\,\,2 \end{array}\)

Khí đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGjbGaeyypa0Zaa8qCaeaacaWGLbWaaWbaaSqabeaacaWG1baa % aOGaaiOlaiaaikdacaWGKbGaamyDaiabg2da9aWcbaGaaGymaaqaai % aaikdaa0Gaey4kIipakiaaikdadaWdXbqaaiaadwgadaahaaWcbeqa % aiaadwhaaaGccaWGKbGaamyDaaWcbaGaaGymaaqaaiaaikdaa0Gaey % 4kIipaaaa!4ADD! % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWdXbqaamaalaaabaGaamyzamaaCaaaleqabaWaaOaaaeaacaWG % 4baameqaaaaaaOqaamaakaaabaGaamiEaaWcbeaaaaGccaWGKbGaam % iEaaWcbaGaaGymaaqaaiaaisdaa0Gaey4kIipaaaa!3F47! \int\limits_1^4 {\frac{{{e^{\sqrt x }}}}{{\sqrt x }}dx} = \int\limits_1^2 {{e^u}.2du = } 2\int\limits_1^2 {{e^u}du} \)


 

Câu 44: Trắc nghiệm ID: 176324

Tập hợp tất cả tham số m để hàm số \(y=x^3+(m+1)x^2+3x+2\) đồng biến trên \(\mathbb{R}\) là

Xem đáp án

TXĐ: \(D=\mathbb{R}\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa % aaaaWdbiaadMhacqGH9aqpcaWG4bWdamaaCaaaleqabaWdbiaaioda % aaGccqGHRaWkcaGGOaGaamyBaiabgUcaRiaaigdacaGGPaGaamiEa8 % aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaG4maiaadIhacqGH % RaWkcaaIYaaabaGaamyEaiaacEcacqGH9aqpcaaIZaGaamiEamaaCa % aaleqabaGaaGOmaaaakiabgUcaRiaaikdacaGGOaGaamyBaiabgUca % RiaaigdacaGGPaGaamiEaiabgUcaRiaaiodaaeaacqGHuoarcaGGNa % Gaeyypa0Jaaiikaiaad2gacqGHRaWkcaaIXaGaaiykamaaCaaaleqa % baGaaGOmaaaakiabgkHiTiaaiodacaGGUaGaaG4maiabg2da9iaad2 % gadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamyBaiabgkHi % TiaaiIdaaaaa!64F6! \begin{array}{l} y = {x^3} + (m + 1){x^2} + 3x + 2\\ y' = 3{x^2} + 2(m + 1)x + 3\\ \Delta = {4(m + 1)^2} - 4.3.3 = 4{m^2} + 8m - 32 \end{array}\)

Để hàm số đồng biến trên \(\mathbb{R}\) thì \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aacqGHuoarcaGGNaGaeyizImQaaGimaiaaykW7caaMc8UaaGPaVlab % gcGiIiaadIhacqGHiiIZcqWIDesOaaa!43F6! y' % MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImlaaa!37B9! \ge 0\,\,\,\forall x \in \mathbb{R}\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGHuh % Y2daGabaabaeqabaGaamyyaiabg2da9iaaiodacqGH+aGpcaaIWaGa % aGPaVlaaykW7caGGOaGaamiBaiaadYgacaqGKbGaaiykaaqaaiabgs % 5aejabgsMiJkaaicdaaaGaay5EaaaaqaaaaaaaaaWdbeaacqGHuoar % cqGHKjYOcaaIWaGaeyi1HSTaamyBamaaCaaaleqabaGaaGOmaaaaki % abgUcaRiaaikdacaWGTbGaeyOeI0IaaGioaiabgsMiJkaaicdaaeaa % caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl % aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgsDiBlabgkHi % TiaaisdacqGHKjYOcaWGTbGaeyizImQaaGOmaaaaaa!768F! \begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l} a = 3 > 0\,\,(ll{\rm{d}})\\ \Delta \le 0 \end{array} \right.\\ \Delta \le 0 \Leftrightarrow 4{m^2} + 8m - 32 \le 0\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow - 4 \le m \le 2 \end{array}\)

Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGTbGaeyicI48aamWaaeaacqGHsislcaaI0aGaai4oaiaaikda % aiaawUfacaGLDbaaaaa!3DA1! m \in \left[ { - 4;2} \right]\)

Câu 45: Trắc nghiệm ID: 176325

Có bao nhiêu giá trị nguyên của tham số \(m\,\,(|m|<10)\)  để phương trình \(2^{x-1}=log_4{(x+2m)}+m\) có nghiệm

Xem đáp án

Điều kiện \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bGaey4kaSIaaGOmaiaad2gacqGH+aGpcaaIWaaaaa!3B62! x + 2m > 0\)

Ta có:

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqababaaaaaaa % aapeqaaiaaikdadaahaaWcbeqaaiaadIhacqGHsislcaaIXaaaaOGa % eyypa0JaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaisdaaeqaaOGaai % ikaiaadIhacqGHRaWkcaaIYaGaamyBaiaacMcacqGHRaWkcaWGTbaa % baGaeyi1HSTaaGOmamaaCaaaleqabaGaamiEaaaakiabg2da9iGacY % gacaGGVbGaai4zamaaBaaaleaacaaIYaaabeaakiaacIcacaWG4bGa % ey4kaSIaaGOmaiaad2gacaGGPaGaey4kaSIaaGOmaiaad2gaaaaa!55C0! \begin{array}{l} \,\,\,\,\,\,\,{2^{x - 1}} = {\log _4}(x + 2m) + m\\ \Leftrightarrow {2^x} = {\log _2}(x + 2m) + 2m \end{array}\)

đặt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aacaWG0bGaeyypa0JaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaikda % aeqaaOGaaiikaiaadIhacqGHRaWkcaaIYaGaamyBaiaacMcaaaa!40BA! t = {\log _2}(x + 2m)\)

khi đó có hệ phương trình: 

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aadaGabaabaeqabaGaaGOmamaaCaaaleqabaGaamiEaaaakiabg2da % 9iaadshacqGHRaWkcaaIYaGaamyBaaqaaiaadshacqGH9aqpciGGSb % Gaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiEaiab % gUcaRiaaikdacaWGTbGaaiykaaaacaGL7baacqGHuhY2daGabaabae % qabaGaaGOmamaaCaaaleqabaGaamiEaaaakiabg2da9iaadshacqGH % RaWkcaaIYaGaamyBaaqaaiaaikdadaahaaWcbeqaaiaadshaaaGccq % GH9aqpcaWG4bGaey4kaSIaaGOmaiaad2gaaaGaay5EaaGaeyi1HS9a % aiqaaqaabeqaaiaaikdadaahaaWcbeqaaiaadIhaaaGccqGHsislca % WG0bGaeyypa0JaaGOmaiaad2gaaeaacaaIYaWaaWbaaSqabeaacaWG % 0baaaOGaeyOeI0IaamiEaiabg2da9iaaikdacaWGTbaaaiaawUhaaa % aa!6966! \left\{ \begin{array}{l} {2^x} = t + 2m\\ t = {\log _2}(x + 2m) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {2^x} = t + 2m\\ {2^t} = x + 2m \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {2^x} - t = 2m\\ {2^t} - x = 2m \end{array} \right.\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aacqGHuhY2caaIYaWaaWbaaSqabeaacaWG4baaaOGaeyOeI0IaamiD % aiabg2da9iaaikdadaahaaWcbeqaaiaadshaaaGccqGHsislcaWG4b % Gaeyi1HSTaaGPaVlaaikdadaahaaWcbeqaaiaadIhaaaGccqGHRaWk % caWG4bGaeyypa0JaaGOmamaaCaaaleqabaGaamiDaaaakiabgUcaRi % aadshacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGa % aGymaiaacMcaaaa!58FA! \Leftrightarrow {2^x} - t = {2^t} - x \Leftrightarrow \,{2^x} + x = {2^t} + t\,\,\,\,\,\,(1)\)

Xét hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aacaWGMbGaaiikaiaadwhacaGGPaGaeyypa0JaaGOmamaaCaaaleqa % baGaamyDaaaakiabgUcaRiaadwhaaaa!3E20! f(u) = {2^u} + u\) là hàm số đồng biến trên \(\mathbb{R}\)

do đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aadaqadaqaaiaaigdaaiaawIcacaGLPaaacqGHuhY2caWG4bGaeyyp % a0JaamiDaaaa!3DAF! \left( 1 \right) \Leftrightarrow x = t\)

vậy ta có phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aacaaIYaWaaWbaaSqabeaacaWG4baaaOGaeyOeI0IaamiEaiabg2da % 9iaaikdacaWGTbaaaa!3CA1! {2^x} - x = 2m\)

Xét hàm số \(g(x)=2^x-x\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqababaaaaaaa % aapeqaaiaadEgacaGGNaGaaiikaiaadIhacaGGPaGaeyypa0JaaGOm % amaaCaaaleqabaGaamiEaaaakiGacYgacaGGUbGaaGOmaiabgkHiTi % aaigdaaeaacaWGNbGaai4jaiaacIcacaWG4bGaaiykaiabg2da9iaa % icdacqGHuhY2caaIYaWaaWbaaSqabeaacaWG4baaaOGaciiBaiaac6 % gacaaIYaGaeyOeI0IaaGymaiabg2da9iaaicdacqGHuhY2caWG4bGa % eyypa0JaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOWaae % WaaeaadaWcaaqaaiaaigdaaeaaciGGSbGaaiOBaiaaikdaaaaacaGL % OaGaayzkaaGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbWaaSbaaS % qaaiaaikdaaeqaaOWaaeWaaeaaciGGSbGaaiOBaiaaikdaaiaawIca % caGLPaaaaaaa!6839! \begin{array}{l} g'(x) = {2^x}\ln 2 - 1\\ g'(x) = 0 \Leftrightarrow {2^x}\ln 2 - 1 = 0 \Leftrightarrow x = {\log _2}\left( {\frac{1}{{\ln 2}}} \right) = - {\log _2}\left( {\ln 2} \right) \end{array}\)

bảng biến thiên của hàm số \(g(x)\)

nhìn vào bảng biến thiên ta thấy phương trình (1) có nghiệm

 \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGHuh % Y2caaIYaGaamyBaiabgwMiZoaalaaabaGaaGymaaqaaiGacYgacaGG % UbGaaGOmaaaacqGHRaWkciGGSbGaai4BaiaacEgadaWgaaWcbaGaaG % OmaaqabaGccaGGOaGaciiBaiaac6gacaaIYaGaaiykaaqaaiabgsDi % Blaad2gacqGHLjYSdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaaba % WaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaaIYaaaaiabgUcaRiGa % cYgacaGGVbGaai4zamaaBaaaleaacaaIYaaabeaakiaacIcaciGGSb % GaaiOBaiaaikdacaGGPaaacaGLOaGaayzkaaGaeyisISRaaGimaiaa % cYcacaaI1aaaaaa!5FD8! \begin{array}{l} \Leftrightarrow 2m \ge \frac{1}{{\ln 2}} + {\log _2}(\ln 2)\\ \Leftrightarrow m \ge \frac{1}{2}\left( {\frac{1}{{\ln 2}} + {{\log }_2}(\ln 2)} \right) \approx 0,5 \end{array}\)

Kết hợp với điều kiện \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WGTbaacaGLhWUaayjcSdGaeyipaWJaaGymaiaaicdaaaa!3C80! \left| m \right| < 10\) thì có 9 giá trị m để phương trình có nghiệm

Câu 46: Trắc nghiệm ID: 176326

Cho hàm số \(f(x)\). Hàm số \(y=f'(x)\) có bảng xét dấu như sau

\(\begin{array}{c|c} x & -\infty\,\,\,\,\,\,\,\,\,\,\,\,-2 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\ 3 \,\,\,\,\,\,\,\,\,\,\,\,+\infty \\ \hline f'(x) &\,\,\,\, - \,\,\,\,\,\,0 \,\,\,+\,\,\,\,\,\, 0 \,\,\,\,\,+\,\,0 \,\,\,\,\,\,- \end{array}\)

Số điểm cực tiểu của hàm số \(y=f(x^2+3x)\) là

Xem đáp án

Xét hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG5b % Gaeyypa0JaamOzaiaacIcacaWG4bWaaWbaaSqabeaacaaIYaaaaOGa % ey4kaSIaaG4maiaadIhacaGGPaaabaGaamyEaiaacEcacqGH9aqpca % GGOaGaaGOmaiaadIhacqGHRaWkcaaIZaGaaiykaiaadAgacaGGNaGa % aiikaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGaam % iEaiaacMcaaaaa!4DA9! \begin{array}{l} y = f({x^2} + 3x), \,\mathrm{ta\,có}\,y' = (2x + 3)f'({x^2} + 3x) \end{array}\)

cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacE % cacqGH9aqpcaaIWaGaeyi1HS9aamqaaqaabeqaaiaaikdacaWG4bGa % ey4kaSIaaG4maiabg2da9iaaicdaaeaacaWGMbGaai4jaiaacIcaca % WG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4maiaadIhacaGG % PaGaeyypa0JaaGimaaaacaGLBbaacqGHuhY2daWabaabaeqabaGaam % iEaiabg2da9maalaaabaGaeyOeI0IaaG4maaqaaiaaikdaaaaabaGa % amOzaiaacEcacaGGOaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgU % caRiaaiodacaWG4bGaaiykaiabg2da9iaaicdaaaGaay5waaaaaa!5C1F! y' = 0 \Leftrightarrow \left[ \begin{array}{l} 2x + 3 = 0\\ f'({x^2} + 3x) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{{ - 3}}{2}\\ f'({x^2} + 3x) = 0 \end{array} \right.\)

Dựa vào bảng biến thiên của \(f'(x)\):

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cacaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaGaeyi1HS9aamqaaqaa % beqaaiaadIhacqGH9aqpcqGHsislcaaIYaaabaGaamiEaiabg2da9i % aaigdaaeaacaWG4bGaeyypa0JaaG4maaaacaGLBbaaaaa!4828! f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 2\\ x = 1\\ x = 3 \end{array} \right.\)

suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cacaGGOaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaioda % caWG4bGaaiykaiabg2da9iaaicdacqGHuhY2daWabaabaeqabaGaam % iEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaWG4bGaeyyp % a0JaeyOeI0IaaGOmaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccq % GHRaWkcaaIZaGaamiEaiabg2da9iaaigdaaeaacaWG4bWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSIaaG4maiaadIhacqGH9aqpcaaIZaaaai % aawUfaaiabgsDiBpaadeaaeaqabeaacaWG4bGaeyypa0JaeyOeI0Ia % aGymaaqaaiaadIhacqGH9aqpcqGHsislcaaIYaaabaGaamiEaiabg2 % da9maalaaabaGaeyOeI0IaaG4maiabgglaXoaakaaabaGaaGymaiaa % iodaaSqabaaakeaacaaIYaaaaaqaaiaadIhacqGH9aqpdaWcaaqaai % abgkHiTiaaiodacqGHXcqSdaGcaaqaaiaaikdacaaIXaaaleqaaaGc % baGaaGOmaaaaaaGaay5waaaaaa!7122! f'({x^2} + 3x) = 0 \Leftrightarrow \left[ \begin{array}{l} {x^2} + 3x = - 2\\ {x^2} + 3x = 1\\ {x^2} + 3x = 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = - 2\\ x = \frac{{ - 3 \pm \sqrt {13} }}{2}\\ x = \frac{{ - 3 \pm \sqrt {21} }}{2} \end{array} \right.\)

trong đó \(x = \frac{{ - 3 \pm \sqrt {13} }}{2}\) là nghiệm kép

từ bảng xét dấu của \(f'(x)\) ta có thể suy ra:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI % ZaGaamiEaaGaayjkaiaawMcaaiabgYda8iaaicdacqGHuhY2daWaba % abaeqabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaioda % caWG4bGaeyipaWJaeyOeI0IaaGOmaaqaaiaadIhadaahaaWcbeqaai % aaikdaaaGccqGHRaWkcaaIZaGaamiEaiabg6da+iaaiodaaaGaay5w % aaGaeyi1HS9aamqaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4b % GaeyipaWJaeyOeI0IaaGymaaqaaiaadIhacqGH8aapdaWcaaqaaiab % gkHiTiaaiodacqGHsisldaGcaaqaaiaaikdacaaIXaaaleqaaaGcba % GaaGOmaaaaaeaacaWG4bGaeyOpa4ZaaSaaaeaacqGHsislcaaIZaGa % ey4kaSYaaOaaaeaacaaIYaGaaGymaaWcbeaaaOqaaiaaikdaaaaaai % aawUfaaaaa!67F2! f'\left( {{x^2} + 3x} \right) < 0 \Leftrightarrow \left[ \begin{array}{l} {x^2} + 3x < - 2\\ {x^2} + 3x > 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2 < x < - 1\\ x < \frac{{ - 3 - \sqrt {21} }}{2}\\ x > \frac{{ - 3 + \sqrt {21} }}{2} \end{array} \right.\)

Ta có bảng xét dấu của \(y'\)

Quan sát bảng biến thiên ta thấy hàm số \(y=f(x^2+3x)\) có các điểm cực tiểu là 

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadIhacqGH9aqpcqGHsislcaaIYaaabaGaamiEaiabg2da9maa % laaabaGaeyOeI0IaaG4maiabgUcaRmaakaaabaGaaGOmaiaaigdaaS % qabaaakeaacaaIYaaaaaaacaGL7baaaaa!41B7! \left\{ \begin{array}{l} x = - 2\\ x = \frac{{ - 3 + \sqrt {21} }}{2} \end{array} \right.\)

Vậy hàm số có hai điểm cực tiểu

Câu 47: Trắc nghiệm ID: 176327

Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng a. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác \(SAB, SBC, SCD, SDA\)\(O\) là giao điểm của \(AC\, \mathrm{và}\, BD\). Thể tích khối chóp \(O.MNPQ\) là

Xem đáp án

Gọi \(M', N', P', Q' \) lần lượt là trung điểm của  \(AB, BC, CD, AD\). H là giao điểm của QN và SO

Gọi O là tâm mặt đáy. Khi đó \(SO \bot (ABCD)\) và \(SO = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

Thể tích khối chóp \(S.ABCD\) là: \( {V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{{{a^3}\sqrt 2 }}{6}\)

Ta có:

\( {S_{MNPQ}} = 2{S_{NPQ}} = 2.\frac{4}{9}{S_{N'P'Q'}} = \frac{2}{9}4{S_{N'P'Q'}} = \frac{2}{9}{S_{ABCD}}\)

\(d(O;(MNPQ)) = OH = \frac{1}{3}SO\)

Vậy thể tích \(S.MNPQ\) là

\(\begin{array}{l} {V_{S.MNPQ}} = \frac{1}{3}OH.{S_{MNPQ}} = \frac{1}{3}\frac{1}{3}SO.\frac{2}{9}{S_{ABCD}}\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{2}{{27}}{V_{S.ABCD}}\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{2{a^3}\sqrt 2 }}{{27.6}} = \frac{{{a^3}\sqrt 2 }}{{81}} \end{array}\)

Câu 48: Trắc nghiệm ID: 176328

Số giá trị nguyên của tham số \(m\) để phương trình \(4^x-(m+1)2^x+2m-3=0\) có hai nghiệm trái dấu

Xem đáp án

Xét \(4^x-(m+1)2^x+2m-3=0\,\,\,\,(1)\)

Đặt \(t=2^x\,\,\,\,(t>0)\). Khi đó (1) trở thành:

\(t^2-(m+1)t+2m-3=0\)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGHuh % Y2caWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiDaiabgkHi % TiaaiodacqGH9aqpcaWGTbGaaiikaiaadshacqGHsislcaaIYaGaai % ykaaqaaiabgsDiBlaad2gacqGH9aqpdaWcaaqaaiaadshadaahaaWc % beqaaiaaikdaaaGccqGHsislcaWG0bGaeyOeI0IaaG4maaqaaiaads % hacqGHsislcaaIYaaaaaaaaa!5047! \begin{array}{l} \Leftrightarrow {t^2} - t - 3 = m(t - 2)\\ \Leftrightarrow m = \frac{{{t^2} - t - 3}}{{t - 2}} \end{array}\)

Đặt \(f(t)=\frac{{{t^2} - t - 3}}{{t - 2}}\)

TXĐ: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 % da9maabmaabaGaaGimaiaacUdacqGHRaWkcqGHEisPaiaawIcacaGL % PaaacaGGCbGaae4EaiaaikdacaGG9baaaa!40B2! D = \left( {0; + \infty } \right)\backslash {\rm{\{ }}2\} \)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cacaGGOaGaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadshadaahaaWc % beqaaiaaikdaaaGccqGHsislcaaI0aGaamiDaiabgUcaRiaaisdaae % aadaqadaqaaiaadshacqGHsislcaaIYaaacaGLOaGaayzkaaWaaWba % aSqabeaacaaIYaaaaaaakiabg6da+iaaicdacaaMc8UaaGPaVlaayk % W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgcGiIiaadshacqGH % iiIZcaWGebaaaa!586F! f'(t) = \frac{{{t^2} - 4t + 4}}{{{{\left( {t - 2} \right)}^2}}} > 0\,\,\,\,\,\,\,\,\forall t \in D\)

Bảng biến thiên

(1) có hai nghiệm phân biệt \(x_1, x_2\) trái dấu nghĩa là:

 \(x_1<0<x_2\)\( \Leftrightarrow {t_1} < 1 < {t_2}\)

\(\Leftrightarrow \)đường thẳng \(y=m\) cắt đường thẳng \(y=f(t)\) tại hai điểm nằm về hai phía của đường thẳng \(t=1\)

\(\Leftrightarrow 1,5<m<3\)

Vậy có 1 giá trị nguyên của m thỏa mãn điều kiện

Câu 49: Trắc nghiệm ID: 176329

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại B. \(AB=a\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA=\sqrt 2a\). Gọi E là trung điểm của \(AB\). Khoảng cách giữa đường thẳng \(SE\) và đường thẳng \(BC\) là

Xem đáp án

Gọi I là hình chiếu vuông góc của B lên SE \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % OqaiaadMeacqGHLkIxcaWGtbGaamyraaaa!3D38! \Rightarrow BI \bot SE\,\,\,\,(1)\)

Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadkeacaWGdbGaeyyPI4Laam4uaiaadgeaaeaacaWGcbGaam4q % aiabgwQiEjaadgeacaWGcbaaaiaawUhaaiabgkDiElaadkeacaWGdb % GaeyyPI4LaaiikaiaadofacaWGbbGaamOqaiaacMcacqGHshI3caWG % cbGaam4qaiabgwQiEjaadkeacaWGjbaaaa!514C! \left\{ \begin{array}{l} BC \bot SA\\ BC \bot AB \end{array} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot BI\,\,\,\,\,(2)\)

Từ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaig % dacaGGPaGaaiilaiaacIcacaaIYaGaaiykaiabgkDiElaadsgacaGG % OaGaam4uaiaadweacaGGSaGaamOqaiaadoeacaGGPaGaeyypa0Jaam % OqaiaadMeaaaa!45E7! (1),(2) \Rightarrow d(SE,BC) = BI\)

Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaadM % eacqGH9aqpdaWcaaqaaiaadggadaGcaaqaaiaaikdaaSqabaGccaGG % UaGaamyyaaqaaiaaikdadaGcaaqaaiaaikdacaWGHbWaaWbaaSqabe % aacaaIYaaaaOGaey4kaSYaaSaaaeaacaWGHbWaaWbaaSqabeaacaaI % YaaaaaGcbaGaaGinaaaaaSqabaaaaOGaeyypa0ZaaSaaaeaacaWGHb % WaaOaaaeaacaaIYaaaleqaaaGcbaGaaG4maaaaaaa!4696! BI = \frac{{a\sqrt 2 .a}}{{2\sqrt {2{a^2} + \frac{{{a^2}}}{4}} }} = \frac{{a\sqrt 2 }}{3}\)

Câu 50: Trắc nghiệm ID: 176330

Biết rằng tồn tại duy nhất bộ các số nguyên \(a,b,c\) sao cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % GGOaGaaGinaiaadIhacqGHRaWkcaaIYaGaaiykaiGacYgacaGGUbGa % amiEaiaadsgacaWG4bGaeyypa0JaamyyaiabgUcaRiaadkgaciGGSb % GaaiOBaiaaikdacqGHRaWkcaWGJbGaciiBaiaac6gacaaIZaaaleaa % caaIYaaabaGaaG4maaqdcqGHRiI8aaaa!4E0E! \int\limits_2^3 {(4x + 2)\ln xdx = a + b\ln 2 + c\ln 3} \). Giá trị của \(a+b+c\) là

Xem đáp án

Xét \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaaiikaiaaisdacaWG4bGaey4kaSIaaGOmaiaacMca % ciGGSbGaaiOBaiaadIhacaWGKbGaamiEaaWcbaGaaGOmaaqaaiaaik % daa0Gaey4kIipaaaa!4521! I = \int\limits_2^2 {(4x + 2)\ln xdx} \)

Đặt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadwhacqGH9aqpciGGSbGaaiOBaiaadIhaaeaacaWGKbGaamOD % aiabg2da9iaacIcacaaI0aGaamiEaiabgUcaRiaaikdacaGGPaGaam % izaiaadIhaaaGaay5EaaGaeyO0H49aaiqaaqaabeqaaiaadsgacaWG % 1bGaeyypa0ZaaSaaaeaacaaIXaaabaGaamiEaaaacaWGKbGaamiEaa % qaaiaadAhacqGH9aqpcaaIYaGaamiEamaaCaaaleqabaGaaGOmaaaa % kiabgUcaRiaaikdacaWG4baaaiaawUhaaaaa!56D4! \left\{ \begin{array}{l} u = \ln x\\ dv = (4x + 2)dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \frac{1}{x}dx\\ v = 2{x^2} + 2x \end{array} \right.\)

Khi đó

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maaeiaabaWaamWaaeaadaqadaqaaiaaikdacaWG4bWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhaaiaawIcacaGLPaaaci % GGSbGaaiOBaiaadIhaaiaawUfacaGLDbaaaiaawIa7amaaDaaaleaa % caaIYaaabaGaaG4maaaakiabgkHiTmaapehabaWaaeWaaeaacaaIYa % GaamiEaiabgUcaRiaaikdaaiaawIcacaGLPaaaaSqaaiaaikdaaeaa % caaIZaaaniabgUIiYdaaaa!505F! I = \left. {\left[ {\left( {2{x^2} + 2x} \right)\ln x} \right]} \right|_2^3 - \int\limits_2^3 {\left( {2x + 2} \right)} \)

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaMb8 % UaaGzaVlaaygW7caaMb8UaaGPaVlaaykW7caaMc8Uaeyypa0JaaGOm % aiaaisdaciGGSbGaaiOBaiaaiodacqGHsislcaaIXaGaaGOmaiGacY % gacaGGUbGaaGOmaiabgkHiTmaaeiaabaWaaeWaaeaacaWG4bWaaWba % aSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhaaiaawIcacaGLPa % aaaiaawIa7amaaDaaaleaacaaIYaaabaGaaG4maaaaaOqaaiaaykW7 % caaMc8UaaGPaVlaaykW7cqGH9aqpcaaIYaGaaGinaiGacYgacaGGUb % GaaGinaiabgkHiTiaaigdacaaIYaGaciiBaiaac6gacaaIYaGaeyOe % I0IaaG4naaaaaa!672F! \begin{array}{l} \,\,\, = 24\ln 3 - 12\ln 2 - \left. {\left( {{x^2} + 2x} \right)} \right|_2^3\\ \,\,\,\, = 24\ln 4 - 12\ln 2 - 7 \end{array}\)

Vậy \(a=-7, b=-12, c=24\)

\(a=b+c=5\)

 

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »