Câu hỏi Đáp án 2 năm trước 85

Cho hàm số \(f(x)\). Hàm số \(y=f'(x)\) có bảng xét dấu như sau

\(\begin{array}{c|c} x & -\infty\,\,\,\,\,\,\,\,\,\,\,\,-2 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\ 3 \,\,\,\,\,\,\,\,\,\,\,\,+\infty \\ \hline f'(x) &\,\,\,\, - \,\,\,\,\,\,0 \,\,\,+\,\,\,\,\,\, 0 \,\,\,\,\,+\,\,0 \,\,\,\,\,\,- \end{array}\)

Số điểm cực tiểu của hàm số \(y=f(x^2+3x)\) là

A. \(5\)

B. \(4\)

C. \(3\)

D. \(2\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Xét hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG5b % Gaeyypa0JaamOzaiaacIcacaWG4bWaaWbaaSqabeaacaaIYaaaaOGa % ey4kaSIaaG4maiaadIhacaGGPaaabaGaamyEaiaacEcacqGH9aqpca % GGOaGaaGOmaiaadIhacqGHRaWkcaaIZaGaaiykaiaadAgacaGGNaGa % aiikaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGaam % iEaiaacMcaaaaa!4DA9! \begin{array}{l} y = f({x^2} + 3x), \,\mathrm{ta\,có}\,y' = (2x + 3)f'({x^2} + 3x) \end{array}\)

cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacE % cacqGH9aqpcaaIWaGaeyi1HS9aamqaaqaabeqaaiaaikdacaWG4bGa % ey4kaSIaaG4maiabg2da9iaaicdaaeaacaWGMbGaai4jaiaacIcaca % WG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4maiaadIhacaGG % PaGaeyypa0JaaGimaaaacaGLBbaacqGHuhY2daWabaabaeqabaGaam % iEaiabg2da9maalaaabaGaeyOeI0IaaG4maaqaaiaaikdaaaaabaGa % amOzaiaacEcacaGGOaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgU % caRiaaiodacaWG4bGaaiykaiabg2da9iaaicdaaaGaay5waaaaaa!5C1F! y' = 0 \Leftrightarrow \left[ \begin{array}{l} 2x + 3 = 0\\ f'({x^2} + 3x) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{{ - 3}}{2}\\ f'({x^2} + 3x) = 0 \end{array} \right.\)

Dựa vào bảng biến thiên của \(f'(x)\):

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cacaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaGaeyi1HS9aamqaaqaa % beqaaiaadIhacqGH9aqpcqGHsislcaaIYaaabaGaamiEaiabg2da9i % aaigdaaeaacaWG4bGaeyypa0JaaG4maaaacaGLBbaaaaa!4828! f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 2\\ x = 1\\ x = 3 \end{array} \right.\)

suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cacaGGOaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaioda % caWG4bGaaiykaiabg2da9iaaicdacqGHuhY2daWabaabaeqabaGaam % iEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaWG4bGaeyyp % a0JaeyOeI0IaaGOmaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccq % GHRaWkcaaIZaGaamiEaiabg2da9iaaigdaaeaacaWG4bWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSIaaG4maiaadIhacqGH9aqpcaaIZaaaai % aawUfaaiabgsDiBpaadeaaeaqabeaacaWG4bGaeyypa0JaeyOeI0Ia % aGymaaqaaiaadIhacqGH9aqpcqGHsislcaaIYaaabaGaamiEaiabg2 % da9maalaaabaGaeyOeI0IaaG4maiabgglaXoaakaaabaGaaGymaiaa % iodaaSqabaaakeaacaaIYaaaaaqaaiaadIhacqGH9aqpdaWcaaqaai % abgkHiTiaaiodacqGHXcqSdaGcaaqaaiaaikdacaaIXaaaleqaaaGc % baGaaGOmaaaaaaGaay5waaaaaa!7122! f'({x^2} + 3x) = 0 \Leftrightarrow \left[ \begin{array}{l} {x^2} + 3x = - 2\\ {x^2} + 3x = 1\\ {x^2} + 3x = 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = - 2\\ x = \frac{{ - 3 \pm \sqrt {13} }}{2}\\ x = \frac{{ - 3 \pm \sqrt {21} }}{2} \end{array} \right.\)

trong đó \(x = \frac{{ - 3 \pm \sqrt {13} }}{2}\) là nghiệm kép

từ bảng xét dấu của \(f'(x)\) ta có thể suy ra:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI % ZaGaamiEaaGaayjkaiaawMcaaiabgYda8iaaicdacqGHuhY2daWaba % abaeqabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaioda % caWG4bGaeyipaWJaeyOeI0IaaGOmaaqaaiaadIhadaahaaWcbeqaai % aaikdaaaGccqGHRaWkcaaIZaGaamiEaiabg6da+iaaiodaaaGaay5w % aaGaeyi1HS9aamqaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4b % GaeyipaWJaeyOeI0IaaGymaaqaaiaadIhacqGH8aapdaWcaaqaaiab % gkHiTiaaiodacqGHsisldaGcaaqaaiaaikdacaaIXaaaleqaaaGcba % GaaGOmaaaaaeaacaWG4bGaeyOpa4ZaaSaaaeaacqGHsislcaaIZaGa % ey4kaSYaaOaaaeaacaaIYaGaaGymaaWcbeaaaOqaaiaaikdaaaaaai % aawUfaaaaa!67F2! f'\left( {{x^2} + 3x} \right) < 0 \Leftrightarrow \left[ \begin{array}{l} {x^2} + 3x < - 2\\ {x^2} + 3x > 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2 < x < - 1\\ x < \frac{{ - 3 - \sqrt {21} }}{2}\\ x > \frac{{ - 3 + \sqrt {21} }}{2} \end{array} \right.\)

Ta có bảng xét dấu của \(y'\)

Quan sát bảng biến thiên ta thấy hàm số \(y=f(x^2+3x)\) có các điểm cực tiểu là 

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadIhacqGH9aqpcqGHsislcaaIYaaabaGaamiEaiabg2da9maa % laaabaGaeyOeI0IaaG4maiabgUcaRmaakaaabaGaaGOmaiaaigdaaS % qabaaakeaacaaIYaaaaaaacaGL7baaaaa!41B7! \left\{ \begin{array}{l} x = - 2\\ x = \frac{{ - 3 + \sqrt {21} }}{2} \end{array} \right.\)

Vậy hàm số có hai điểm cực tiểu

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại B. \(AB=a\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA=\sqrt 2a\). Gọi E là trung điểm của \(AB\). Khoảng cách giữa đường thẳng \(SE\) và đường thẳng \(BC\) là

Xem lời giải » 2 năm trước 119
Câu 2: Trắc nghiệm

Cho số phức \(z=3-2i\). Điểm biểu diễn hình học của số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Daiabg2 % da9iaadQhacqGHRaWkcaWGPbWaa0aaaeaacaWG6baaaaaa!3BD2! {\rm{w}} = z + i\overline z \)  có tọa độ

Xem lời giải » 2 năm trước 111
Câu 3: Trắc nghiệm

Từ các chữ số \(0;1;2;3;4;5;6;7\) lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau

Xem lời giải » 2 năm trước 107
Câu 4: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % igdaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmai % aadIhacqGHsislcaaIZaaaaaaa!41DF! y = \frac{{{x^2} - 1}}{{{x^2} - 2x - 3}}\) là

Xem lời giải » 2 năm trước 106
Câu 5: Trắc nghiệm

trong không gian \(Oxyz\) cho hai điểm \(A(0;1;2), B(2;2;1)\). Phương trình mặt phẳng qua A và vuông góc với AB là

Xem lời giải » 2 năm trước 106
Câu 6: Trắc nghiệm

Biết rằng tồn tại duy nhất bộ các số nguyên \(a,b,c\) sao cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % GGOaGaaGinaiaadIhacqGHRaWkcaaIYaGaaiykaiGacYgacaGGUbGa % amiEaiaadsgacaWG4bGaeyypa0JaamyyaiabgUcaRiaadkgaciGGSb % GaaiOBaiaaikdacqGHRaWkcaWGJbGaciiBaiaac6gacaaIZaaaleaa % caaIYaaabaGaaG4maaqdcqGHRiI8aaaa!4E0E! \int\limits_2^3 {(4x + 2)\ln xdx = a + b\ln 2 + c\ln 3} \). Giá trị của \(a+b+c\) là

Xem lời giải » 2 năm trước 105
Câu 7: Trắc nghiệm

Cho hình lăng trụ \(ABCD.A'B'C'D'\) có thể tích bằng \(a^3\). Thể tích khối chóp \(A'.ABC\) là

Xem lời giải » 2 năm trước 105
Câu 8: Trắc nghiệm

Cho hình chóp \(S.ABC\)có thể tích \(70a^3\). Gọi M, N là accs điểm trên SB, SC sao cho \(SM=\frac{2}{3}SB, SN=\frac{4}{5}SC\). Thể tích khối chóp \(S.AMN\) bằng

Xem lời giải » 2 năm trước 102
Câu 9: Trắc nghiệm

Trong không gian \(Oxyz\), mặt cầu \((S): x^2+y^2+z^2-4x+4y+4=0\) có bán kính bằng

Xem lời giải » 2 năm trước 101
Câu 10: Trắc nghiệm

Cho hàm số \(y=f(x)\). Hàm số \(y=f'(x)\) có bảng biến thiên như hình vẽ 

Số điểm cực trị của hàm số đã cho là

Xem lời giải » 2 năm trước 101
Câu 11: Trắc nghiệm

Môđun của số phức \(z=4-3i\) là

Xem lời giải » 2 năm trước 101
Câu 12: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(y=\frac{x^2+x+4}{x+1}\) trên đoạn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca % aIWaGaai4oaiaaikdaaiaawUfacaGLDbaaaaa!3A1A! \left[ {0;2} \right]\) bằng

Xem lời giải » 2 năm trước 100
Câu 13: Trắc nghiệm

Với phép biến đổi \(u=\sqrt x\), tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaSaaaeaacaWGLbWaaWbaaSqabeaadaGcaaqaaiaa % dIhaaWqabaaaaaGcbaWaaOaaaeaacaWG4baaleqaaaaakiaadsgaca % WG4baaleaacaaIXaaabaGaaGinaaqdcqGHRiI8aaaa!40FB! \int\limits_1^4 {\frac{{{e^{\sqrt x }}}}{{\sqrt x }}dx} \) trở thành

 

Xem lời giải » 2 năm trước 100
Câu 14: Trắc nghiệm

Tập xác định của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iGacYgacaGGVbGaai4zamaaBaaaleaadaWcaaqaaiaaigdaaeaa % caaIZaaaaaqabaGccaGGOaGaaGinaiabgkHiTiaadIhadaahaaWcbe % qaaiaaikdaaaGccaGGPaaaaa!4179! y = {\log _{\frac{1}{3}}}(4 - {x^2})\)

Xem lời giải » 2 năm trước 100
Câu 15: Trắc nghiệm

Với số thực dương \(a\) bất kì, giá trị của \(\log_2(8a)\) bằng

Xem lời giải » 2 năm trước 100

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »