Lời giải của giáo viên
\({{\log }_{3}}\left( 3{{x}^{2}}+6x+9 \right)-{{y}^{2}}+2={{3}^{{{y}^{2}}}}-{{x}^{2}}-2x\), với \(x\in \left( 0;600 \right)\)
\(\Leftrightarrow {{\log }_{3}}\left( {{x}^{2}}+2x+3 \right)+{{x}^{2}}+2x+3={{3}^{{{y}^{2}}}}+{{y}^{2}}\Leftrightarrow {{\log }_{3}}\left( {{x}^{2}}+2x+3 \right)+{{3}^{{{\log }_{3}}\left( {{x}^{2}}+2x+3 \right)}}={{3}^{{{y}^{2}}}}+{{y}^{2}}\left( * \right)\)
Xét \(f\left( t \right)={{3}^{t}}+t,\,\,t>0;\,\,\,\,f'\left( t \right)={{3}^{t}}\ln 3+1>0\Rightarrow f\left( t \right)\) đồng biến.
Do đó \(\left( * \right)\Leftrightarrow {{\log }_{3}}\left( {{x}^{2}}+2x+3 \right)={{y}^{2}}\)
Với \(x\in \left( 0;600 \right)$\[\Rightarrow {{\log }_{3}}\left( {{x}^{2}}+2x+3 \right)\in \left( 1;12 \right)\Rightarrow y\in \left( 1;4 \right)\)
Do đó có 2 số nguyên y.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x+2y+3z+5=0\). Vectơ nào sau đây là một vectơ pháp tuyến của (P) ?
Số giao điểm của đồ thị hàm số \(y=\frac{x-2}{x+2}\) với đường thẳng y=4x+1 là
Cho số phức \(z=a+bi,(a,b\in \mathbb{R})\) thỏa mãn \(3z+5\bar{z}=5-2i\). Tính giá trị của biểu thức \(P=\frac{a}{b}.\)
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A\left( 1;3;-4 \right)\) và \(B\left( -1;2;2 \right)\). Viết phương trình mặt phẳng trung trực \(\left( \alpha \right)\) của đoạn thẳng AB.
Với a,b là hai số thực dương và khác 1 thỏa mãn \({{\log }_{\sqrt{a}}}\left( a\sqrt[{}]{b} \right)=1\). Mệnh đề nào sau đây đúng ?
Tính diện tích xung quanh \({{S}_{xq}}\) của hình nón có bán kính đáy r=3 và độ dài đường sinh l=5.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, \(SA\bot \left( ABCD \right)\) và \(SA=a\sqrt{6}\). Tính góc \(\varphi \) giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right).\)
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây.
Hàm số đó là hàm số nào?
Cho khối lăng trụ \(ABC.{A}'{B}'{C}'\) có diện tích đáy bằng \(\frac{\sqrt{3}{{a}^{2}}}{2}\) và chiều cao h=a. Thể tích khối lăng trụ đã cho bằng
Hỏi có tất cả bao giá trị nguyên của tham số \(m\in \left[ -10;10 \right]\) để hàm số \(y=2{{x}^{3}}+{{x}^{2}}-mx+2m-1\) nghịch biến trên đoạn \(\left[ -1;1 \right]\)?
Số nghiệm nguyên của bất phương trình \({2^{{x^2} + 3x}} \le 16\) là số nào sau đây ?
Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(y = \sqrt {{x^2} - 2x + 5} \) trên [0;3]. Giá trị của biểu thức M + m bằng