Cho hai số phức \({{z}_{1}}=1+2i\), \({{z}_{2}}=2-3i\). Xác định phần thực, phần ảo của số phức \(z={{z}_{1}}+{{z}_{2}}\).
A. Phần thực bằng 3; phần ảo bằng \(-5\).
B. Phần thực bằng 5; phần ảo bằng 5
C. Phần thực bằng 3; phần ảo bằng 1.
D. Phần thực bằng 3; phần ảo bằng \(-1\).
Lời giải của giáo viên
Ta có : \(z={{z}_{1}}+{{z}_{2}}=1+2i+2-3i=3-i\).
Vậy số phức z có phần thực bằng 3, phần ảo bằng \(-1\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho A là tập hợp gồm 20 điểm phân biệt. Số đoạn thẳng có hai điểm đầu mút phân biệt thuộc tập A là:
Cho số phức \(z\) thỏa mãn \(\left( 1+2i \right)z=\left( 1+2i \right)-\left( -2+i \right)\). Mô đun của \(z\) bằng
Khối chóp có đáy là hình vuông cạnh \(a\) và chiều cao bằng \(4a\). Thể tích khối chóp đã cho bằng
Điểm M là biểu diễn của số phức z trong hình vẽ bên dưới. Chọn khẳng định đúng
Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;\,1;\,-1\, \right)\),\(B\left( 2;\,3;\,2 \right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
Có bao nhiêu số tự nhiên \(x\) không vượt quá \(2018\) thỏa mãn \({{\log }_{2}}\left( \frac{x}{4} \right)\log _{2}^{2}x\ge 0\)?
Đồ thị hàm số \(y=\frac{x+1}{2-x}\) có tiệm cận ngang là đường thẳng:
Tính tổng \(S\) của các phần thực của tất cả các số phức \(z\) thỏa mãn điều kiện \(\bar{z}=\sqrt{3}{{z}^{2}}.\)
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( -1;2;0 \right)\) và có vectơ pháp tuyến \(\overrightarrow{n}=\left( 4;0;-5 \right)\) là
Tìm tập nghiệm \(S\) của phương trình \({{\log }_{2}}\left( {{x}^{2}}-2 \right)+2=0\).
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x+35\) trên đoạn \(\left[ -4;4 \right]\) . Tính \(M+2m\).
Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\\ z = 5 - t \end{array} \right.\) \(\left( t\in \mathbb{R} \right)\). Vectơ chỉ phương của \(d\) là
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
Trong không gian \(Oxyz\), mặt cầu \({{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=4\) có tâm và bán kính lần lượt là