Cho hai số thực x, y thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} = \sqrt {6 + 4x - {x^2}} .\) Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}} - a} \right|.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-10;10] của tham số a để \(M \ge 2m?\)
A. 17
B. 16
C. 15
D. 18
Lời giải của giáo viên
Ta có \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} = \sqrt {6 + 4x - {x^2}} \)
\(\begin{array}{*{20}{l}}
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} - \sqrt {6 + 4x - {x^2}} = 0}\\
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 + \frac{{\left( {\sqrt {{y^2} + 6y + 10} - \sqrt {6 + 4x - {x^2}} } \right)\left( {\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} } \right)}}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }} = 0}\\
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 + \frac{{{y^2} + 6y + 10 - 6 - 4x + {x^2}}}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }} = 0}\\
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 + \frac{{{x^2} + {y^2} - 4x + 6y + 4}}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }} = 0}\\
{ \Leftrightarrow \left( {{x^2} + {y^2} - 4x + 6y + 4} \right)\left( {1 + \frac{1}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }}} \right) = 0}\\
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 = 0\left( {do{\mkern 1mu} {\mkern 1mu} \Leftrightarrow {{\left( {x - 2} \right)}^2} + {{\left( {y + 3} \right)}^2} = 91 + \frac{1}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }} > 0)} \right)}
\end{array}\)
Phương trình \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 9\) là phương trình đường tròn (C) tâm I(2;-3) và bán kính R = 3.
Gọi \(N\left( {x;y} \right) \in (C)\) ta suy ra \(ON = \sqrt {{x^2} + {y^2}} \) suy ra \(T = \left| {ON - a} \right|\)
Gọi A, B là giao điểm của đường tròn (C) và đường thẳng OI.
Khi đó \(OA = OI - R = \sqrt {13} - 3\) và \(OB = OI + R = \sqrt {13} + 3\)
Suy ra \(\sqrt {13} - 3 \le \sqrt {{x^2} + {y^2}} \le \sqrt {13} + 3\)
TH1: Nếu \(\sqrt {13} - 3 \le a \le \sqrt {13} + 3\) thì \(\left| {\sqrt {x{}^2 + {y^2}} - a} \right| \ge 0 \Rightarrow \min T = 0 \Rightarrow M \ge 2m \Rightarrow a \in \left\{ {1;2;3;4;5;6} \right\}\)
TH2: Nếu \(a < \sqrt {13} - 3 \Rightarrow a < \sqrt {13} \) nên \(\left| {\sqrt {13} + 3 - a} \right| > \left| {\sqrt {13} - 3 - a} \right|\) , do đó \(M = \left| {\sqrt {13} + 3 - a} \right|;m = \left| {\sqrt {13} - 3 - a} \right|\)
Vì \(M \ge 2m \Rightarrow \left| {\sqrt {13} + 3 - a} \right| \ge 2\left| {\sqrt {13} - 3 - a} \right|\)
\( \Leftrightarrow {\left( {\sqrt {13} + 3 - a} \right)^2} - {\left( {2\sqrt {13} - 6 - 2a} \right)^2} \ge 0 \Leftrightarrow \sqrt {13} - 9 \le a \le \sqrt {13} + 1 \Rightarrow a \in \left\{ { - 5; - 4; - 3; - 2; - 1;0} \right\}\)
TH3: Nếu \(a > \sqrt {13} + 3 \Rightarrow a > \sqrt {13} \) nên \(\left| {\sqrt {13} + 3 - a} \right| < \left| {\sqrt {13} - 3 - a} \right|,\) do đó \(m = \left| {\sqrt {13} + 3 - a} \right|;M = \left| {\sqrt {13} - 3 - a} \right|\)
Vì \(M \ge 2m \Rightarrow \left| {\sqrt {13} - 3 - a} \right| \ge 2\left| {\sqrt {13} + 3 - a} \right|\)
\( \Leftrightarrow {\left( {\sqrt {13} - 3 - a} \right)^2} - {\left( {2\sqrt {13} + 6 - 2a} \right)^2} \ge 0 \Leftrightarrow \sqrt {13} + 1 \le a \le \sqrt {13} + 9 \Rightarrow a \in \left\{ {7;8;9;10} \right\}\)
Vậy có 16 giá trị của a thỏa mãn đề bài.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tứ diện SABC và G là trọng tâm của tứ diện, mặt phẳng quay quanh AG và cắt các cạnh SB, SC tương ứng tại M, N. Giá trị nhỏ nhất của tỉ số \(\frac{{{V_{S,AMN}}}}{{{V_{S.ABC}}}}\) là
Phương trình \({7^{2{x^2} + 6x + 4}} = 49\) có tổng tất cả các nghiệm bằng
Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{5x + 4}}\) là
Cho hàm số \(f(x)\) liên tục trên R và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?
Cho phương trình \(m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\,\,(1).\) Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right).\) Khi đó, \(a\) thuộc khoảng
Cho hình chóp đều .S ABCD có cạnh AB = a, góc giữa đường thẳng SA và mặt phẳng ABC bằng \(45^0\). Thể tích khối chóp S.ABCD là
Cho a > 0, b > 0, giá trị của biểu thức \(T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \frac{1}{4}\left( {\sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} } \right){}^2} \right]^{\frac{1}{2}}}\) bằng
Cho hinh chóp S.ABC có SA vuông góc với đáy. Tam giác ABC vuông cân tại B , biết SA = AC = 2a. Thể tích khối chóp S.ABC là
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; \(AD = 3BC = 3a;AB = a,SA = a\sqrt 3 .\) Điểm I thỏa mãn \(\overrightarrow {AD} = 3\overrightarrow {AI} ;\) M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Giá trị lớn nhất của m để phương trình \({e^{2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}}} = m\) có nghiệm trên đoạn [0;2] là
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, \(AB = a\sqrt 3 ,\) BC = 2a, đường thẳng AC' tạo với mặt phẳng BCC'B' một góc \(30^0\) Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng
Tìm tập xác định D của hàm số \(y = {\left( {{x^2} - 3x - 4} \right)^{\sqrt {2 - \sqrt 3 } }}.\)
Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là
Cho hàm số \(y = \frac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}}.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-6;6] của tham số m để đồ thị hàm số có bốn đường tiệm cận?
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số \(y = \frac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn [0;4] bằng - 1