Câu hỏi Đáp án 2 năm trước 48

Cho tứ diện SABC và G là trọng tâm của tứ diện, mặt phẳng quay quanh AG và cắt các cạnh SB, SC tương ứng tại M, N. Giá trị nhỏ nhất của tỉ số \(\frac{{{V_{S,AMN}}}}{{{V_{S.ABC}}}}\) là

A. \(\frac{1}{2}\)

B. \(\frac{1}{3}\)

C. \(\frac{3}{8}\)

D. \(\frac{4}{9}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Đặt \(\frac{{SM}}{{SB}} = a;\frac{{SN}}{{SC}} = b\left( {0 < a;b < 1} \right)\) 

Lấy E là trung điểm BC.

Trong (SAE), kéo dài AG cắt SE tại I. Khi đó \(I \in MN\) và I là trọng tâm tam giác SBC.

Khi đó trong tam giác SBC ta luôn có \(\frac{{SB}}{{SM}} + \frac{{SC}}{{SN}} = 3\) (tính chất đã được chứng minh ở trên)

Lại có \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \frac{{SA}}{{SA}}.\frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = ab\) 

Ta có \(\frac{{SB}}{{SM}} + \frac{{SC}}{{SN}} = 3 \Leftrightarrow \frac{1}{a} + \frac{1}{b} = 3.\) 

Xét \(\frac{1}{a} + \frac{1}{b}\mathop  \ge \frac{2}{{\sqrt {ab} }} \Leftrightarrow \sqrt {ab}  \ge \frac{2}{{\frac{1}{a} + \frac{1}{b}}} = \frac{2}{3} \Leftrightarrow ab \ge \frac{4}{9}\) 

Dấu = xảy ra khi \(a = b = \frac{2}{3}.\) 

Từ đó \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = ab \ge \frac{4}{9}\) hay tỉ số \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}}\) nhỏ nhất là bằng \(\frac{4}{9}.\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Phương trình \({7^{2{x^2} + 6x + 4}} = 49\) có tổng tất cả các nghiệm bằng

Xem lời giải » 2 năm trước 46
Câu 2: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{5x + 4}}\) là

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Cho hàm số \(f(x)\) liên tục trên R và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Cho hinh chóp S.ABC có SA vuông góc với đáy. Tam giác ABC vuông cân tại B , biết SA = AC = 2a. Thể tích khối chóp S.ABC là

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Cho a > 0, b > 0, giá trị của biểu thức \(T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \frac{1}{4}\left( {\sqrt {\frac{a}{b}}  - \sqrt {\frac{b}{a}} } \right){}^2} \right]^{\frac{1}{2}}}\) bằng

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; \(AD = 3BC = 3a;AB = a,SA = a\sqrt 3 .\) Điểm I thỏa mãn \(\overrightarrow {AD}  = 3\overrightarrow {AI} ;\) M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Cho phương trình \(m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\,\,(1).\) Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right).\) Khi đó, \(a\) thuộc khoảng

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Cho hình chóp đều .S ABCD có cạnh AB = a, góc giữa đường thẳng SA và mặt phẳng ABC bằng \(45^0\). Thể tích khối chóp S.ABCD là

Xem lời giải » 2 năm trước 43
Câu 9: Trắc nghiệm

Cho hai số thực x, y thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10}  = \sqrt {6 + 4x - {x^2}} .\) Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}}  - a} \right|.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-10;10] của tham số a để \(M \ge 2m?\) 

Xem lời giải » 2 năm trước 43
Câu 10: Trắc nghiệm

Cho hàm số \(y = \frac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}}.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-6;6] của tham số m để đồ thị hàm số có bốn đường tiệm cận?

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau

Giá trị lớn nhất của m để phương trình \({e^{2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}}} = m\) có nghiệm trên đoạn [0;2] là

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Tìm tập xác định D của hàm số \(y = {\left( {{x^2} - 3x - 4} \right)^{\sqrt {2 - \sqrt 3 } }}.\) 

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là

Xem lời giải » 2 năm trước 42
Câu 14: Trắc nghiệm

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, \(AB = a\sqrt 3 ,\) BC = 2a, đường thẳng AC' tạo với mặt phẳng BCC'B' một góc \(30^0\) Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng

Xem lời giải » 2 năm trước 42
Câu 15: Trắc nghiệm

Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số \(y = \frac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn [0;4] bằng - 1

Xem lời giải » 2 năm trước 42

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »