Lời giải của giáo viên
Số nghiệm của phương trình \(f\left( x \right)=-\frac{1}{2}\) bằng số nghiệm của đồ thị hàm số \(y=f\left( x \right)\) và đường thẳng \(y=-\frac{1}{2}.\)
Dựa vào đồ thị ta thấy: đồ thị hàm số \(y=f\left( x \right)\) và đường thẳng \(y=-\frac{1}{2}\) cắt nhau tại 2 điểm.
Nên phương trình \(f\left( x \right)=-\frac{1}{2}\) có 2 nghiệm.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x-3}{2}=\frac{y+1}{-2}=\frac{z-5}{3}.\) Vectơ sau đây là một vectơ chỉ phương của đường thẳng d?
Cho các số phức \({{z}_{1}}=1+3i,{{z}_{2}}=-5-3i\). Tìm điểm \(M\left( x;y \right)\) biểu diễn số phức \({{z}_{3}}\), biết rằng trong mặt phẳng phức điểm M nằm trên đường thẳng x-2y+1=0 và mô đun số phức \(\text{w}=3{{z}_{3}}-{{z}_{2}}-2{{z}_{1}}\) đạt giá trị nhỏ nhất.
Tìm đạo hàm của hàm số \(y={{\log }_{7}}x\) với \(\left( x>0 \right).\)
Trong không gian Oxyz, cho \(\overrightarrow{a}=\left( -2;2;0 \right),\overrightarrow{b}=\left( 2;2;0 \right),\overrightarrow{c}=\left( 2;2;2 \right).\) Giá trị của \(\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\) bằng
Người ta muốn xây bể chứa nước dạng hình chữ nhật không nắp có thể tích \(200\text{ }{{m}^{3}}.\) Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Giá thuê công nhân xây bể là 300.000 đồng/\({{m}^{2}}.\) Chi phí thuê công nhân thấp nhất là
Cho khối hộp hình chữ nhật có ba kích thước 2 ;4 ;6. Thể tích của khối hộp đã cho bằng
Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\) thỏa mãn \(\left| z \right|=1.\) Tìm giá trị lớn nhất của biểu thức \(A=\left| z+2 \right|+2\left| z-2 \right|.\)
Cho \(\int\limits_{0}^{1}{f\left( x \right)dx=2}\) và \(\int\limits_{0}^{1}{g\left( x \right)dx=5}\). Tính \(\int\limits_{0}^{1}{\left( f\left( x \right)-2g\left( x \right) \right)dx}\).
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)=x{{\left( x-1 \right)}^{2}}{{\left( x-2 \right)}^{5}}{{\left( x-3 \right)}^{7}}.\) Số điểm cực trị của hàm số đã cho là
Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng nhau và bằng 2a (minh họa như hình vẽ). Cosin của góc hợp bởi \(\left( A'BC \right)\) và \(\left( ABC \right)\) bằng
Có bao nhiêu bộ \(\left( x;y \right)\) với x,y nguyên và \(1\le x,y\le 2020\) thỏa mãn \(\left( xy+2x+4y+8 \right){{\log }_{3}}\left( \frac{2y}{y+2} \right)\le \left( 2x+3y-xy-6 \right){{\log }_{2}}\left( \frac{2x+1}{x-3} \right)?\)
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-6z+1=0\). Tọa độ tâm I của mặt cầu là
Trog mặt phẳng Oxy, số phức z=-2+4i được biểu diễn bởi điểm nào trong các điểm ở hình vẽ duới đây?
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{0}^{1}{f\left( x \right)dx}=2;\int\limits_{1}^{3}{f\left( x \right)dx}=6.\) Tính \(I=\int\limits_{0}^{3}{f\left( x \right)dx}\).