Câu hỏi Đáp án 2 năm trước 41

Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ bên. Biết hàm số \(y=f\left( x \right)\) đạt cực trị tại các điểm \({{x}_{1}},{{x}_{2}},{{x}_{3}}\) thỏa mãn \({{x}_{3}}={{x}_{1}}+2\), \(f\left( {{x}_{1}} \right)+f\left( {{x}_{3}} \right)+\frac{2}{3}f\left( {{x}_{2}} \right)=0\) và \(\left( C \right)\) nhận đường thẳng \(d:x={{x}_{2}}\) làm trục đối xứng. Gọi \({{S}_{1}},{{S}_{2}},{{S}_{3}},{{S}_{4}}\) là diện tích của các miền hình phẳng được đánh dấu như hình bên. Tỉ số \(\frac{{{S}_{1}}+{{S}_{2}}}{{{S}_{3}}+{{S}_{4}}}\)gần kết quả nào nhất

A. \(0,60\).

Đáp án chính xác ✅

B. \(0,55\).

C. \(0,65\).

D. \(0,70\).

Lời giải của giáo viên

verified HocOn247.com

Nhận thấy kết quả bài toán không đổi khi ta tịnh tiến đồ thị \(\left( C \right)\) sang bên trái sao cho đường thẳng \(d:x={{x}_{2}}\) trùng với trục tung khi đó \(\left( C \right)\) là đồ thị của hàm trùng phương \(y=g\left( x \right)\) có ba điểm cực trị \({{x}_{1}}=-1,{{x}_{2}}=0,{{x}_{3}}=1\). Suy ra \(y=g\left( x \right)=k\left( {{x}^{4}}-2{{x}^{2}} \right)+c\,\,\left( k>0 \right)\)

 Lại có \(f\left( {{x}_{1}} \right)+f\left( {{x}_{3}} \right)+\frac{2}{3}f\left( {{x}_{2}} \right)=0\Rightarrow -2k+2c+\frac{2}{3}c=0\Leftrightarrow c=\frac{3}{4}k\)

Suy ra :\(y=g\left( x \right)=k\left( {{x}^{4}}-2{{x}^{2}} \right)+\frac{3}{4}k\) 

Khi đó: \({{S}_{1}}+{{S}_{2}}=k\int\limits_{0}^{1}{\left| {{x}^{4}}-2{{x}^{2}}+\frac{3}{4} \right|}dx=\frac{28\sqrt{2}-17}{60}k\).

Ta lại có : \(g\left( 0 \right)-g\left( 1 \right)=k\)\(\Rightarrow {{S}_{1}}+{{S}_{2}}+{{S}_{3}}+{{S}_{4}}=k.1=k\) .

Suy ra \({{S}_{3}}+{{S}_{4}}=k-\frac{28\sqrt{2}-17}{60}k=\frac{77-28\sqrt{2}}{60}k\Rightarrow \frac{{{S}_{1}}+{{S}_{2}}}{{{S}_{3}}+{{S}_{4}}}=\frac{28\sqrt{2}-17}{77-28\sqrt{2}}\approx 0,604\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình trụ có bán kính đáy \(r=5\left( \text{cm} \right)\) và khoảng cách giữa hai đáy bằng \(7\left( \text{cm} \right)\). Diện tích xung quanh của hình trụ là

Xem lời giải » 2 năm trước 140
Câu 2: Trắc nghiệm

Trong không gian \(Oxyz\), cho \(A\left( 1;1;-3 \right), B\left( 3;-1;1 \right)\). Gọi M là trung điểm của AB, đoạn OM có độ dài bằng

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Gieo một con xúc sắc cân đối và đồng chất hai lần. Xác suất để cả hai lần xuất hiện mặt sáu chấm là

Xem lời giải » 2 năm trước 47
Câu 4: Trắc nghiệm

Giải phương trình \({{\log }_{\frac{1}{2}}}\left( x-1 \right)=-2\).

Xem lời giải » 2 năm trước 47
Câu 5: Trắc nghiệm

Cho số phức \(\overline{z}=3-2i\). Tìm phần thực và phần ảo của \(z\).

Xem lời giải » 2 năm trước 46
Câu 6: Trắc nghiệm

Trong hệ tọa độ \(Oxy\), parabol \(y=\frac{{{x}^{2}}}{2}\) chia đường tròn tâm \(O\) (\(O\) là gốc tọa độ) bán kính \(r=2\sqrt{2}\) thành 2 phần, diện tích phần nhỏ bằng:

Xem lời giải » 2 năm trước 45
Câu 7: Trắc nghiệm

Cho khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(C{C}'=2a\), đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC=a\sqrt{2}\). Tính thể tích \(V\) của khối lăng trụ đã cho.

Xem lời giải » 2 năm trước 44
Câu 8: Trắc nghiệm

Đường cong trong hình bên là đồ thị của một trong bốn hàm số nào sau đây?

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Cho khối lăng trụ \(ABC.{A}'{B}'{C}'\) có thể tích bằng 1. Gọi M,N lần lượt là trung điểm của các đoạn thẳng \(A{A}'\) và \(B{B}'\). Đường thẳng CM cắt đường thẳng \({C}'{A}'\) tại P, đường thẳng CN cắt đường thẳng \({C}'{B}'\) tại Q. Thể tích khối đa diện lồi \({A}'MP{B}'NQ\) bằng

Xem lời giải » 2 năm trước 44
Câu 10: Trắc nghiệm

Trong không gian với hệ trục Oxyz , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):x-2y+2z+11=0\) . Xét điểm M di động trên \(\left( P \right)\) , các điểm  A,B,C phân biệt di động trên \(\left( S \right)\) sao cho AM,BM,CM là các tiếp tuyến của \(\left( S \right)\) . Mặt phẳng \(\left( ABC \right)\) luôn đi qua điểm cố định nào dưới đây ?

Xem lời giải » 2 năm trước 43
Câu 11: Trắc nghiệm

Đổi biến \(x=4\sin t\) của tích phân  \(I=\int\limits_{0}^{\sqrt{8}}{\sqrt{16-{{x}^{2}}}}dx\) ta được: 

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Có bao nhiêu số tự nhiên a sao cho tồn tại số thực \(x\) thoả\({{2021}^{{{x}^{3}}-{{a}^{3\log \left( x+1 \right)}}}}\left( {{x}^{3}}+2020 \right)={{a}^{3\log \left( x+1 \right)}}+2020\)

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-1 \right)}^{3}}\left( 2-x \right).\) Hàm số \(f\left( x \right)\) đồng biến trên khoảng nào, trong các khoảng dưới đây?

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Cho M là tập hợp các số phức \(z\) thỏa mãn \(\left| 2z-i \right|=\left| 2+iz \right|\). Gọi \({{z}_{1}},{{z}_{2}}\) là hai số phức thuộc tập hợp M sao cho \(\left| {{z}_{1}}-{{z}_{2}} \right|=1\). Tính giá trị của biểu thức \(P=\left| {{z}_{1}}+{{z}_{2}} \right|\).

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Cho hai số thực a>1,b>1. Biết phương trình \({{a}^{x}}{{b}^{{{x}^{2}}-1}}=1\) có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\). Tìm giá trị nhỏ nhất của biểu thức \(S={{\left( \frac{{{x}_{1}}{{x}_{2}}}{{{x}_{1}}+{{x}_{2}}} \right)}^{2}}-4\left( {{x}_{1}}+{{x}_{2}} \right)\).

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »