Câu hỏi Đáp án 2 năm trước 40

Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2020] để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là? 

A. 2041200

B. 2041204

Đáp án chính xác ✅

C. 2041195

D. 2041207

Lời giải của giáo viên

verified HocOn247.com

Ta có

\(\begin{array}{l} g'\left( x \right) = \left( {4{x^3} - 4x} \right)f'\left( {{x^4} - 2{x^2} + m} \right)\\ g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} 4{x^3} - 4x = 0{\rm{ }}\left( 1 \right)\\ f'\left( {{x^4} - 2{x^2} + m} \right){\rm{ = 0 }}\left( 2 \right) \end{array} \right. \end{array}\)

\(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = - 1\\ x = 0 \end{array} \right.\)      

\(\left( 2 \right) \Leftrightarrow \left[ \begin{array}{l} {x^4} - 2{x^2} + m = - 2\\ {x^4} - 2{x^2} + m = - 1\\ {x^4} - 2{x^2} + m = 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - m = {x^4} - 2{x^2} + 2 = {g_1}\left( x \right)\\ - m = {x^4} - 2{x^2} + 1 = {g_2}\left( x \right)\\ - m = {x^4} - 2{x^2} - 3 = {g_3}\left( x \right) \end{array} \right.\).

Ta có bảng biến thiên của các hàm số \({g_1}\left( x \right),{g_2}\left( x \right),{g_3}\left( x \right)\) như hình vẽ:

Từ bảng biến trên, ta dễ thấy: với \(- m \le - 4 \Leftrightarrow m \ge 4\) hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị.

Do đó: \(S = \left\{ {4;5;6;7;...;2020} \right\}\)

Vậy tổng tất cả các phần tử của  là: \(4 + 5 + 6 + ... + 2020 = \frac{{\left( {4 + 2020} \right)2017}}{2} = 2041204\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số y = f(x) có bảng biến thiên như sau: 

Giá trị cực tiểu của hàm số bằng

Xem lời giải » 2 năm trước 40
Câu 2: Trắc nghiệm

Cho khối trụ có độ dài đường sinh \(l = a\sqrt 3 \) và bán kính đáy \(r = a\sqrt 2 \). Thể tích của khối trụ đã cho bằng

Xem lời giải » 2 năm trước 38
Câu 3: Trắc nghiệm

Cho hai số thực a, b thỏa mãn \(\frac{1}{3} < b < a < 1\) và biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) + 12\log _{\frac{b}{a}}^2a\) có giá trị nhỏ nhất. Tính \(\frac{b}{a}\).

Xem lời giải » 2 năm trước 37
Câu 4: Trắc nghiệm

Cho hàm số y = f(x) liên tục trên R có \(f'\left( x \right) = \left( {2x - 3} \right){\left( {x + 1} \right)^2}{\left( {x - 2} \right)^3}\left( {4 - x} \right)\). Số điểm cực đại của hàm số y = f(x) là

Xem lời giải » 2 năm trước 37
Câu 5: Trắc nghiệm

Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.

Xem lời giải » 2 năm trước 37
Câu 6: Trắc nghiệm

Cho hình chóp có S.ABCD đáy ABCD là hình chữ nhật. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm của SA biết \(AD = a\sqrt 3 ,AB = a\). Khi đó khoảng cách từ C đến (MBD) là:

Xem lời giải » 2 năm trước 37
Câu 7: Trắc nghiệm

Với a, b là các số thực dương tùy ý và a khác 1, đặt \(P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}\). Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 37
Câu 8: Trắc nghiệm

Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = -i là điểm nào dưới đây?

Xem lời giải » 2 năm trước 36
Câu 9: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng (P): 3x - 4z + 2 = 0. Véc tơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (P)?

Xem lời giải » 2 năm trước 36
Câu 10: Trắc nghiệm

Nghiệm của phương trình 2x = 4 là

Xem lời giải » 2 năm trước 35
Câu 11: Trắc nghiệm

Trong không gian Oxyz, cho điểm A(2;-1;-3) và mặt phẳng (P): 3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là

Xem lời giải » 2 năm trước 35
Câu 12: Trắc nghiệm

Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng

Xem lời giải » 2 năm trước 35
Câu 13: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 8y - 2z - 4 = 0\). Tâm và bán kính của mặt cầu (S) lần lượt là 

Xem lời giải » 2 năm trước 35
Câu 14: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(f(x) = {x^3} + 3{x^2} - 9x - 7\) trên đoạn [-4;0] bằng

Xem lời giải » 2 năm trước 34
Câu 15: Trắc nghiệm

Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng \(2a\sqrt 2 \). Diện tích xung quanh của hình nón đã cho bằng

Xem lời giải » 2 năm trước 34

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »