Cho hàm số \(y=\frac{3x-1}{x-3}\) có đồ thị là (C). Tìm điểm M thuộc đồ thị (C) sao cho khoảng cách từ M đến tiệm cận đứng bằng hai lần khoảng cách từ M đến tiệm cận ngang.
A. \({M_1}\left( {1; - 1} \right);{M_2}\left( {7;5} \right)\)
B. \({M_1}\left( {1;1} \right);{M_2}\left( { - 7;5} \right)\)
C. \({M_1}\left( { - 1;1} \right);{M_2}\left( {7;5} \right)\)
D. \({M_1}\left( {1;1} \right);{M_2}\left( {7; - 5} \right)\)
Lời giải của giáo viên
Đồ thị (C) có tiệm cận đứng: \({{\Delta }_{1}}:x-3=0\) và tiệm cận ngang \({{\Delta }_{2}}:y-3=0\)
Gọi \(M\left( {{x}_{0}};{{y}_{0}} \right)\in \left( C \right)\) với \({{y}_{0}}=\frac{3{{x}_{0}}-1}{{{x}_{0}}-3}\,\,\,\left( {{x}_{0}}\ne 3 \right)\). Ta có:
\(d\left( M,{{\Delta }_{1}} \right)=2.d\left( M,{{\Delta }_{2}} \right)\Leftrightarrow \left| {{x}_{0}}-3 \right|=2.\left| {{y}_{0}}-3 \right|\)
\(\Leftrightarrow \left| {{x}_{0}}-3 \right|=2.\left| \frac{3{{x}_{0}}-1}{{{x}_{0}}-3}-3 \right|\Leftrightarrow {{\left( {{x}_{0}}-3 \right)}^{2}}=16\Leftrightarrow \left[ \begin{align} & {{x}_{0}}=-1 \\ & {{x}_{0}}=7 \\ \end{align} \right.\)
Vậy có hai điểm thỏa mãn đề bài là \({{M}_{1}}\left( -1;1 \right)\) và \({{M}_{2}}\left( 7;5 \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho ba điểm \(A,\text{ }B,\text{ }M\) lần lượt là điểm biểu diễn của các số phức \(-4,\,\text{ }4i,\,\text{ }x+3i\). Với giá trị thực nào của x thì \(A,\text{ }B,\text{ }M\) thẳng hàng?
Biết \(\bar z = {\left( {\sqrt 2 + i} \right)^2}.\left( {1 - \sqrt 2 i} \right)\). Phần ảo của số phức z là
Một đại lý xăng dầu cần làm một cái bồn dầu hình trụ bằng tôn có thể tích \(16\pi \,{m^3}\). Tìm bán kính đáy r của hình trụ sao cho hình trụ được làm ra ít tốn nguyên vật liệu nhất.
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - 3y + 4z = 2016\). Véctơ nào sau đây là một véctơ pháp tuyến của mặt phẳng (P) ?
Tính giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( { - 3{x^3} + x + 1} \right)\)
Tìm nguyên hàm của hàm số \(f\left( x \right) = \ln 4x\).
Trong không gian Oxyz, cho điểm \(A\left( -3;2;-3 \right)\) và hai đường thẳng \({{d}_{1}}:\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-3}{-1}\) và \({{d}_{2}}:\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-5}{3}\). Phương trình mặt phẳng chứa d1 và d2 có dạng
Cho hình phẳng giới hạn bởi các đường \(y = \frac{1}{{1 + \sqrt {4 - 3{\rm{x}}} }},y = 0,x = 0,x = 1\) quay xung quanh trục Ox. Thể tích khối tròn xoay tạo thành bằng
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB=BC=\frac{1}{2}AD=a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 3y + z - 1 = 0\). Tính khoảng cách d từ điểm M(1;2;1) đến mặt phẳng (P).
Tìm nguyên hàm của hàm số \(f\left( x \right) = 2x + 1\).
Hàm số \(y = \frac{{{x^3}}}{3} - {x^2} + x\) đồng biến trên khoảng nào sau đây?
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) và các trục tọa độ.