Cho hàm số \(y=\frac{1}{2}{{x}^{2}}\) có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B vuông góc với nhau. Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \(\frac{9}{4}\). Gọi \(x_{1}^{{}},\,x_{2}^{{}}\) lần lượt là hoành độ của A và B. Giá trị của \({{(x_{1}^{{}}+\,x_{2}^{{}})}^{2}}\) bằng :
A. 11
B. 7
C. 5
D. 13
Lời giải của giáo viên
Giả sử phương trình đường thẳng AB là : \(y=\,ax+b\) ta có phương trình hoành độ giao điểm : \(\frac{1}{2}{{x}^{2}}\text{=}\,\text{a}x\text{ }+b\Leftrightarrow \frac{1}{2}{{x}^{2}}\text{- a}x\text{ - }b=0\,\,\,\,\,(*)\)
Theo đề bài ta có \(\,x_{1}^{{}},\,x_{2}^{{}}\) là hai nghiệm của \(\left( * \right)\)nên \(\frac{1}{2}{{x}^{2}}\text{- a}x\text{- }b=\frac{1}{2}(x-x_{1}^{{}})(x-x_{2}^{{}})\)
Giả sử ta có diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB là:
\(S=\int\limits_{x_{1}^{{}}}^{x_{2}^{{}}}{\text{(ax}+b-\frac{1}{2}{{x}^{2}})dx}=-\frac{1}{2}\int\limits_{x_{1}^{{}}}^{x_{2}^{{}}}{(x-x_{1}^{{}})(x-x_{2}^{{}})dx}=\frac{9}{4}\Leftrightarrow -\frac{{{(x_{1}^{{}}-x_{2}^{{}})}^{3}}}{12}=\frac{9}{4}\Rightarrow x_{1}^{{}}-x_{2}^{{}}=-3\,\,\,(1)\)
Ta lại có tiếp tuyến tại A và B vuông góc với nhau nên \(x_{1}^{{}}.\,x_{2}^{{}}=-1\,\,\,\,(2)\)
Từ (1) và (2) suy ra \({{(x_{1}^{{}}+\,x_{2}^{{}})}^{2}}={{(x_{1}^{{}}-\,x_{2}^{{}})}^{2}}+4x_{1}^{{}}.x_{2}^{{}}=9-4=5\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+10y-6z+49=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và không có cực trị, đồ thị của hàm số \(y=f\left( x \right)\) là đường cong của hình vẽ bên. Xét hàm số \(h\left( x \right)=\frac{1}{2}{{\left[ f\left( x \right) \right]}^{2}}-2x.f\left( x \right)+2{{x}^{2}}\). Mệnh đề nào sau đây đúng?
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có tâm thuộc mặt phẳng \(\left( P \right):x+2y+z-7=0\) và đi qua hai điểm \(A\left( 1\,;\,2\,;\,1 \right), B\left( 2\,;\,5\,;\,3 \right)\). Bán kính nhỏ nhất của mặt cầu \(\left( S \right)\) bằng
Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;1 \right)\) và \(I\left( 1;2;3 \right).\) Phương trình của mặt cầu tâm I và đi qua A là
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=-{{x}^{3}}+3x+1\) trên đoạn \(\left[ 0;2 \right]\) bằng
Tính thể tích của khối tứ diện ABCD, biết AB,AC,AD đôi một vuông góc và lần lượt có độ dài bằng 2,3,4.
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{3}}\left( 2x+3 \right),\,\forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
Số nghiệm nguyên của bất phương trình \({{2}^{{{x}^{2}}+3\text{x}}}\le 16\) là
Thể tích của khối trụ có chu vi đáy bằng \(4\pi a\) và độ dài đường cao bằng a là
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.
Đồ thị hàm số \(y=\left| f\left( x-2017 \right)+2018 \right|\) có bao nhiêu điểm cực trị?
Cho hàm số y = f(x) có đồ thị như hình vẽ bên.
Hàm số đồng biến trên khoảng nào sau đây?
Giả sử \({{z}_{1}},{{z}_{2}}\) là hai trong các số phức thỏa mãn \(\left( z-6 \right)\left( 8+\overline{zi} \right)\) là số thực. Biết rằng \(\left| {{z}_{1}}-{{z}_{2}} \right|=4\), giá trị nhỏ nhất của \(\left| {{z}_{1}}+3{{z}_{2}} \right|\) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới. Hỏi hàm số đó có bao nhiêu điểm cực trị?
Trong không gian Oxyz, đường thẳng Oz có phương trình là