Câu hỏi Đáp án 2 năm trước 49

Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có tâm thuộc mặt phẳng \(\left( P \right):x+2y+z-7=0\) và đi qua hai điểm \(A\left( 1\,;\,2\,;\,1 \right), B\left( 2\,;\,5\,;\,3 \right)\). Bán kính nhỏ nhất của mặt cầu \(\left( S \right)\) bằng

A. \(\frac{{\sqrt {546} }}{3}\)

Đáp án chính xác ✅

B. \(\frac{{\sqrt {763} }}{3}\)

C. \(\frac{{\sqrt {345} }}{3}\)

D. \(\frac{{\sqrt {470} }}{3}\)

Lời giải của giáo viên

verified HocOn247.com

Gọi \(I\left( x\,;\,y\,;\,z \right)\) là tâm của mặt cầu \(\left( S \right)\).

Vì \(I\in \left( P \right)\) nên \(x+2y+z=7\left( 1 \right)\)

Mặt khác, \(\left( S \right)\) đi qua A và B nên \(IA=IB\text{ }\left( =R \right)\)

\(\Leftrightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}={{\left( x-2 \right)}^{2}}+{{\left( y-5 \right)}^{2}}+{{\left( z-3 \right)}^{2}}\)

\(\Leftrightarrow x+3y+2z=16 \left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra I nằm trên đường thẳng d là giao tuyến của hai mặt phẳng: \(\left\{ \begin{array}{l} \left( P \right):x + 2y + z = 7\\ \left( Q \right):x + 3y + 2z = 16 \end{array} \right.\) (I)

\(\Rightarrow d\) có một VTCP \(\overrightarrow{u}=\left[ \overrightarrow{{{n}_{\left( P \right)}}}\,;\,\overrightarrow{{{n}_{\left( Q \right)}}} \right]=\left( 1\,;\,-1\,;\,1 \right)\), với \(\overrightarrow{{{n}_{\left( P \right)}}}=\left( 1\,;\,2\,;\,1 \right)\) và \(\overrightarrow{{{n}_{\left( Q \right)}}}=\left( 1\,;\,3\,;\,2 \right)\).

Mặt khác, cho z=0 thì \(\left( I \right)\) trở thành: \(\left\{ \begin{align} & x+2y=7 \\ & x+3y=16 \\ \end{align} \right.\) \(\Leftrightarrow \left\{ \begin{align} & x=-11 \\ & y=9 \\ \end{align} \right.\).

\(\Rightarrow d\) đi qua điểm \(B\left( -11\,;\,9\,;\,0 \right)\).

Do đó, d có phương trình tham số: \(\left\{ \begin{align} & x=-11+t \\ & y=9-t \\ & z=t \\ \end{align} \right.\left( t\in \mathbb{R} \right)\).

\(\Rightarrow I\left( -11+t\,;\,9-t\,;\,t \right)\).

\(\Rightarrow R=IA=\sqrt{{{\left( t-12 \right)}^{2}}+{{\left( 7-t \right)}^{2}}+{{\left( t-1 \right)}^{2}}}=\sqrt{3{{t}^{2}}-40t+194}\).

Đặt \(f\left( t \right)=3{{t}^{2}}-40t+194, t\in \mathbb{R}\).

Vì \(f\left( t \right)\) là hàm số bậc hai nên \(\underset{\mathbb{R}}{\mathop{\min }}\,f\left( t \right)=f\left( \frac{20}{3} \right)=\frac{182}{3}\).

Vậy \({{R}_{\min }}=\sqrt{\frac{182}{3}}=\frac{\sqrt{546}}{3}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và không có cực trị, đồ thị của hàm số \(y=f\left( x \right)\) là đường cong của hình vẽ bên. Xét hàm số \(h\left( x \right)=\frac{1}{2}{{\left[ f\left( x \right) \right]}^{2}}-2x.f\left( x \right)+2{{x}^{2}}\). Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 50
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+10y-6z+49=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).

Xem lời giải » 2 năm trước 50
Câu 3: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;1 \right)\) và \(I\left( 1;2;3 \right).\) Phương trình của mặt cầu tâm I và đi qua A là

Xem lời giải » 2 năm trước 48
Câu 4: Trắc nghiệm

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=-{{x}^{3}}+3x+1\) trên đoạn \(\left[ 0;2 \right]\) bằng

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Tính thể tích của khối tứ diện ABCD, biết AB,AC,AD đôi một vuông góc và lần lượt có độ dài bằng 2,3,4.

Xem lời giải » 2 năm trước 40
Câu 6: Trắc nghiệm

Thể tích của khối trụ có chu vi đáy bằng \(4\pi a\) và độ dài đường cao bằng a là

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.

Đồ thị hàm số \(y=\left| f\left( x-2017 \right)+2018 \right|\) có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Đồ thị sau đây là đồ thị của hàm số nào?

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Cho hàm số y = f(x) có đồ thị như hình vẽ bên.

Hàm số đồng biến trên khoảng nào sau đây?

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Số nghiệm nguyên của bất phương trình \({{2}^{{{x}^{2}}+3\text{x}}}\le 16\) là

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{3}}\left( 2x+3 \right),\,\forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Cho hàm số \(y=\frac{1}{2}{{x}^{2}}\) có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B vuông góc với nhau. Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \(\frac{9}{4}\). Gọi \(x_{1}^{{}},\,x_{2}^{{}}\) lần lượt là hoành độ của A và B. Giá trị của \({{(x_{1}^{{}}+\,x_{2}^{{}})}^{2}}\) bằng :

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới. Hỏi hàm số đó có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Giả sử \({{z}_{1}},{{z}_{2}}\) là hai trong các số phức thỏa mãn \(\left( z-6 \right)\left( 8+\overline{zi} \right)\) là số thực. Biết rằng \(\left| {{z}_{1}}-{{z}_{2}} \right|=4\), giá trị nhỏ nhất của \(\left| {{z}_{1}}+3{{z}_{2}} \right|\) bằng

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Trong không gian Oxyz, đường thẳng Oz có phương trình là

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »