Cho hàm số \(y={{x}^{3}}+a{{x}^{2}}+bx+c\)có đồ thị (C). Biết rằng tiếp tuyến d của (C) tại điểm A có hoành độ bằng -1 cắt (C) tại B có hoành độ bằng 2 (xem hình vẽ). Diện tích hình phẳng giới hạn bởi d và (C) (phần gạch chéo trong hình vẽ) bằng
A. \(\frac{13}{2}.\)
B. \(\frac{25}{4}.\)
C. \(\frac{27}{4}.\)
D. \(\frac{11}{2}.\)
Lời giải của giáo viên
Ta có \(A(-1;a-b+c-1)\)và \(y'=3{{x}^{2}}+2ax+b\Rightarrow y'(-1)=3-2a+b\)
Phương trình tiếp tuyến của (C) tại A: \(y=(3-2a+b)(x+1)+a-b+c-1\,\,\,(d)\)
Phương trình hoành độ giao điểm của (C) và (d) là:
\({{x}^{3}}+a{{x}^{2}}+bx+c=(3-2a+b)(x+1)+a-b+c-1\,\,\,(1)\)
Phương trình (1) có nghiệm \(x=-1;x=2\Leftrightarrow 4a+2b+c+8=3(3-2a+b)+a-b+c-19a=0\Leftrightarrow a=0\)
Suy ra \(\left( C \right):y={{x}^{3}}+bx+c\) và \(d:y=\left( 3+b \right)\left( x+1 \right)-b+c-1\)
Diện tích hình phẳng là: \(S=\int\limits_{-1}^{2}{\left[ (3+b)(x+1)-b+c-1-\left( {{x}^{3}}+bx+c \right) \right]}dx=\int\limits_{-1}^{2}{(3x-{{x}^{3}}+2})dx=\frac{27}{4}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng
Cho hàm số \(y=f(x)\) có đạo hàm tại \(x=1\) và \({f}'(1)\ne 0\). Gọi \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) lần lượt là hai tiếp tuyến của đồ thị hàm số \(y=f(x)\) và \(y=g(x)=x.f(2\text{x}-1)\) tại điểm có hoành độ \(x=1\). Biết rằng hai đường thẳng \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) vuông góc với nhau. Khẳng định nào sau đây đúng?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?
Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là
Cho hàm số f(x) liên tục trên ℝ. Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y=f(x)\), \(y=0,\text{ }x=0\) và \(x=4\) (như hình vẽ). Mệnh đề nào dưới đây là đúng?
Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có \(AB=a,\) góc giữa đường thẳng \({A}'C\) và mặt phẳng \(\left( ABC \right)\) bằng 45°. Thể tích của khối lăng trụ \(ABC.{A}'{B}'{C}'\) bằng
Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Điểm \(M\left( a,b \right)\left( a>0 \right)\) thuộc \(\left( C \right)\) sao cho khoảng cách từ M tới tiệm cận đứng của \(\left( C \right)\) bằng khoảng cách M tới tiệm cận ngang của \(\left( C \right)\). Mệnh đề nào dưới đây đúng?
Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng
Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng
Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right)\). Phương trình tham số của \(\Delta \) là
Gọi F(x) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right)={{x}^{2}}{{e}^{ax}}\left( a\ne 0 \right),\) sao cho \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1.\) Chọn mệnh đề đúng trong các mệnh đề sau:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(AC=\frac{a\sqrt{2}}{2}\). Cạnh bên SA vuông góc với mặt phẳng đáy và đường thẳng SB tạo với mặt phẳng \((ABC\text{D})\) một góc \(60{}^\circ \). Khoảng cách giữa hai đường thẳng AD và SC bằng