Cho hàm số \(f\left( x \right),\) đồ thị của hàm số \(y=f'\left( x \right)\) là đường cong trong hình bên. Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 2x \right)-4x\) trên đoạn \(\left[ -\frac{3}{2};2 \right]\) bằng
A. f(0)
B. f(-3) + 6
C. f(2) - 4
D. f(4) - 8
Lời giải của giáo viên
Ta có: \(g'\left( x \right)=2f'\left( 2x \right)-4\)
Cho \(g'\left( x \right)=0\Leftrightarrow 2f'\left( 2x \right)-4=0\Leftrightarrow f'\left( 2x \right)=2\Leftrightarrow f'\left( 2x \right)=1.\)
Dựa vào đồ thị hàm số \(y=f'\left( x \right)\) đề bài cho ta thấy trên \(\left[ -\frac{3}{2};2 \right]\) đường thẳng y=1 cắt đồ thị hàm số \(y=f'\left( x \right)\) tại x-0,x=2, trong đó x=0 là nghiệm kép.
Do đó \(f'\left( 2x \right)=1\Leftrightarrow 2x=2\Leftrightarrow x=1\) (không xét nghiệm kép 2x=0 vì qua các nghiệm của phương trình này thì \(g'\left( x \right)\) không đổi dấu.
Lấy x=0 ta có \(g'\left( -1 \right)=2f'\left( -1 \right)-4>0\) do \(f'\left( -1 \right)>2\)
Do đó ta có bảng xét dấu \(g'\left( x \right)\) trên \(\left[ -\frac{3}{2};1 \right]\) như sau:
Với \(\mathop {{\rm{max}}}\limits_{\left[ { - \frac{3}{2};1} \right]} g\left( x \right) = g\left( 1 \right) = f\left( 2 \right) - 4.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm \(f'\left( x \right)\) như sau:
Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;3 \right)\) và \(B\left( 6;5;5 \right).\) Xét khối nón \(\left( N \right)\) có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( N \right)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của \(\left( N \right)\) có phương trình dạng 2x+by+cz+d=0. Giá trị của b+c+d bằng
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{4}}-2{{x}^{2}}+3\) trên đoạn \(\left[ 0;2 \right].\) Tổng M+m bằng
Nếu \(\int\limits_{1}^{2}{f\left( x \right)dx=5}\) và \(\int\limits_{2}^{3}{f\left( x \right)dx=-2}\) thì \(\int\limits_{1}^{3}{f\left( x \right)dx}\) bằng
Với a là số thực dương tùy ý, \({{\log }_{3}}\left( 9a \right)\) bằng
Với a là số thực dương tùy ý, \(\sqrt{{{a}^{3}}}\) bằng
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào, trong các khoảng dưới đây?
Trong không gian Oxyz, mặt cầu có tâm là gốc tọa độ O và đi qua điểm \(M\left( 0;0;2 \right)\) có phương trình là:
Nghiệm của phương trình \({{\log }_{2}}\left( 3x \right)=3\) là:
Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;2 \right)\) và \(B\left( 3;1;0 \right).\) Trung điểm của đoạn thẳng AB có tọa độ là
Xét hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2\) và \(\left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{3}.\) Giá trị lớn nhất của \(\left| 3{{z}_{1}}+{{z}_{2}}-5i \right|\) bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?