Cho hàm số \(f\left( x \right) > 0\) với mọi \(x \in R\), \(f\left( 0 \right) = 1\) và \(f\left( x \right) = \sqrt {x + 1} f'\left( x \right)\) với mọi \(x \in R\). Mệnh đề nào dưới đây đúng?
A. \(4 < f\left( 3 \right) < 6\)
B. \(f\left( 3 \right) < 2\)
C. \(2 < f\left( 3 \right) < 4\)
D. \(f\left( 3 \right) > 6\)
Lời giải của giáo viên
Theo bài ra ta có: \(f\left( x \right) = \sqrt {x + 1} f'\left( x \right)\) (*).
Do \(f\left( x \right) > 0\,\,\forall x \in R\) nên từ (*) ta có \(\frac{{f'\left( x \right)}}{{f\left( x \right)}} = \frac{1}{{\sqrt {x + 1} }}\).
Lấy nguyên hàm 2 vế ta được: \(\int\limits_{}^{} {\frac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \int\limits_{}^{} {\frac{1}{{\sqrt {x + 1} }}dx} \)
\( \Leftrightarrow \ln \left| {f\left( x \right)} \right|dx = 2\sqrt {x + 1} + C \Leftrightarrow \ln f\left( x \right) = 2\sqrt {x + 1} + C \Leftrightarrow f\left( x \right) = {e^{2\sqrt {x + 1} + C}}\)
Ta có \(f\left( 0 \right) = 1 \Rightarrow 1 = {e^{2 + C}} \Leftrightarrow 2 + C = 0 \Leftrightarrow C = - 2\).
Do đó \(f\left( x \right) = {e^{2\sqrt {x + 1} - 2}} \Rightarrow f\left( 3 \right) = {e^2} \approx 7,4 > 6\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức \(z\) thỏa mãn \(\left( {2 + 3i} \right)z + 4 - 3i = 13 + 4i.\) Mô đun của \(z\) bằng
Cho khối nón có chiều cao bằng \(2a\) và bán kính đáy bằng \(a\) . Thể tích của khối nón đã cho bằng
Trong không gian Oxyz, cho các điểm \(A\left( { - 1;2;1} \right),\,\,B\left( {2; - 1;4} \right),\,\,C\left( {1;1;4} \right)\). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABC} \right)\)?
Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} - 2x.\) Giá trị của \(x_1^2 + x_2^2\) bằng:
Trong không gian \({\rm{Ox}}yz,\) vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng \(\left( P \right):\,2y - 3z + 1 = 0?\)
Cho \(\left( {{u_n}} \right)\)là một cấp số cộng thỏa mãn \({u_1} + {u_3} = 8\) và \({u_4} = 10.\) Công sai của cấp số cộng đã cho bằng
Cho khối chóp \(SABCD\) có đáy \(ABCD\) là hình thoi tâm \(O,\;AB = a,\;\angle BAD = {60^0},\;SO \bot \left( {ABCD} \right)\) và mặt phẳng \(\left( {SCD} \right)\) tạo với mặt đáy một góc bằng \({60^0}.\) Thể tích khối chóp đã cho bằng:
Họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{{x + 3}}{{{x^2} + 3x + 2}}\) là:
Diện tích hình phẳng bôi đậm trong hình vẽ dưới đây được xác định theo công thức
Với các số \(a,\;b > 0\) thỏa mãn \({a^2} + {b^2} = 6ab,\) biểu thức \({\log _2}\left( {a + b} \right)\) bằng:
Trong không gian \(Oxyz,\) gọi \(d\) là đường thẳng qua \(A\left( {1;\;0;\;2} \right)\) cắt và vuông góc với đường thẳng \({d_1}:\;\dfrac{{x - 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 5}}{{ - 2}}.\) Điểm nào dưới đây thuộc \(d?\)
Trong không gian \({\rm{Ox}}yz,\) cho hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {0; - 1;1} \right)\) .Trung điểm của đoạn thẳng \(AB\) có tọa độ là:
Trong không gian Oxyz, cho hai điểm \(A\left( {3;1; - 3} \right),\,\,B\left( {0; - 2;3} \right)\) và mặt cầu \(\left( S \right):\,\,{\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 1\). Xét điểm M thay đổi luôn thuộc mặt cầu \(\left( S \right)\), giá trị lớn nhất của \(M{A^2} + 2M{B^2}\) bằng:
Cho hình trụ \(\left( T \right)\) có chiều cao bằng 2a. Hai đường tròn đáy của \(\left( T \right)\) có tâm lần lượt là O và \({O_1}\) và bán kính bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm \({O_1}\) lấy điểm B sao cho \(AB = \sqrt 5 a\). Thể tích khối tứ diện \(O{O_1}AB\) bằng: