Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và hàm \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 5} \right)\). Khẳng định nào dưới đây khẳng định đúng?
A. Hàm số \(g\left( x \right)\) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\).
B. Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 2;0} \right)\).
C. Hàm số \(g\left( x \right)\) nghịch biến trên khoảng \(\left( {2; + \infty } \right)\).
D. Hàm số \(g\left( x \right)\) nghịch biến trên khoảng \(\left( { - 2;2} \right)\).
Lời giải của giáo viên
\(g\left( x \right) = f\left( {{x^2} - 5} \right) \Rightarrow g'\left( x \right) = 2x.f'\left( {{x^2} - 5} \right)\)
\(f'\left( {{x^2} - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} - 5 = - 1\\{x^2} - 5 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = \pm \sqrt 7 \end{array} \right.\)
Bảng xét dấu \(g'\left( x \right)\):
\( \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 2;0} \right)\): Là khẳng định đúng.
Chọn: B
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \({x_1},\,{x_2}\) là các nghiệm phức của phương trình \({z^2} + 4z + 7 = 0\) . Số phức \({z_1}\overline {{z_2}} + \overline {{z_1}} {z_2}\) bằng
Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm \(I\left( {1;2;3} \right)\)có phương trình là
Cho số phức z thỏa mãn \({\left( {1 - \sqrt 3 i} \right)^2}z = 3 - 4i.\) Môđun của z bằng:
Cho các số phức \(z = - 1 + 2i,{\rm{w}} = 2 - i.\) Điểm nào trong hình bên biểu diễn số phức \(z + {\rm{w}}?\)
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x - 3y + 2z - 1 = 0,\,\,\left( Q \right):x - z + 2 = 0.\) Mặt phẳng \(\left( \alpha \right)\) vuông góc với cả (P) và (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của \(\left( \alpha \right)\) là:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(Ab = 3a,\,BC = a\) , cạnh bên \(SD = 2a\) và \(SD\) vuông góc với mặt phẳng đáy. Thể tích khối chóp \(S.ABCD\) bằng
Cho hình lập phương \(ABCD.A'B'C'D'\) có \(I,J\) tương ứng là trung điểm của \(BC\) và \(BB'\) . Góc giữa hai đường thẳng \(AC\) và \(IJ\) bằng
Trong không gian \(Oxyz\), cho \(\overrightarrow a \left( { - 3;4;\,0} \right)\) và \(\overrightarrow b \,\left( {5;\,0;\,12} \right)\). Côsin của góc giữa \(\overrightarrow {a\,} \) và \(\overrightarrow b \) bằng
Một vật rơi tự do theo phương trình \(s = \frac{1}{2}g{t^2},\) trong đó \(g \approx 9,8m/{s^2}\) là gia tốc trọng trường. Giá trị gần đúng của vận tốc tức thời của chuyển động tại thời điểm \(t = 4s\) là
Trong không gian \(Oxyz\) , mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {3; - 1;4} \right)\) đồng thời vuông góc với giá của vectơ \(\overrightarrow a \left( {1; - 1;2} \right)\) có phương trình là
Đạo hàm của hàm số \(f\left( x \right) = \frac{{{3^x} - 1}}{{{3^x} + 1}}.\) là:
Cho hàm số \(f\left( x \right)\) dương thỏa mãn \(f\left( 0 \right) = e\) và \({x^2}f'\left( x \right) = f\left( x \right) + f'\left( x \right),\,\forall x \ne \pm 1\). Giá trị \(f\left( {\dfrac{1}{2}} \right)\) là:
Cho \(f(x) = {x^4} - 5{x^2} + 4\) . Gọi \(S\) là diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) và trục hoành. Mệnh đề nào sau đây sai?
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,AD = AA' = 2a\) . Diện tích của mặt cầu ngoại tiếp hình hộp chữ nhật đã cho bằng
Biết rằng \(\int\limits_0^1 {\frac{{dx}}{{3x + 5\sqrt {3x + 1} + 7}} = a\ln 2 + b\ln 3 + c\ln 5} \) với \(a,b,c\) là các số hữu tỉ. Giá trị của \(a + b + c\) bằng