Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây.
Số nghiệm của phương trình \(\frac{{{f}^{3}}\left( x \right)+3{{f}^{2}}\left( x \right)+4f\left( x \right)+2}{\sqrt{3f\left( x \right)+1}}=3f\left( x \right)+2\) là
A. 8
B. 9
C. 6
D. 7
Lời giải của giáo viên
Dựa vào đồ thị ta nhận thấy \(3f\left( x \right)+1>0,\forall x\in \mathbb{R}.\)
Do đó \(\frac{{{f}^{3}}\left( x \right)+3{{f}^{2}}\left( x \right)+4f\left( x \right)+2}{\sqrt{3f\left( x \right)+1}}=3f\left( x \right)+2\)
\(\Leftrightarrow {{f}^{3}}\left( x \right)+3{{f}^{2}}\left( x \right)+3f\left( x \right)+1+f\left( x \right)+1=\sqrt{3f\left( x \right)+1}\left( 3f\left( x \right)+1+1 \right)\)
\(\Leftrightarrow {{\left[ f\left( x \right)+1 \right]}^{3}}+\left[ f\left( x \right)+1 \right]={{\left[ \sqrt{3f\left( x \right)+1} \right]}^{3}}+\sqrt{3f\left( x \right)+1}\text{ }\left( 1 \right).\)
Xét hàm số \(f\left( t \right)={{t}^{3}}+t\) với \(t\in \mathbb{R}.\)
Ta có \(f'\left( t \right)=3{{t}^{2}}+1>0,\forall t\in \mathbb{R}.\) Do đó \(f\left( t \right)\) đồng biến trên \(\mathbb{R}.\)
Khi đó \(\left( 1 \right)\Leftrightarrow f\left( x \right)+1=\sqrt{3f\left( x \right)+1}\Leftrightarrow {{f}^{2}}\left( x \right)+2f\left( x \right)+1=3f\left( x \right)+1.\)
\(\Leftrightarrow {{f}^{2}}\left( x \right)-f\left( x \right)=0\Leftrightarrow \left[ \begin{align} & f\left( x \right)=0 \\ & f\left( x \right)=1 \\ \end{align} \right..\)
Dựa vào hình vẽ ta suy ra phương trình \(f\left( x \right)=0\) có 3 nghiệm và phương trình \(f\left( x \right)=1\) có 6 nghiệm (các nghiệm này không trùng các nghiệm của phương trình \(f\left( x \right)=0).\)
Vậy phương trình đã cho có 9 nghiệm.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)={{\log }_{2}}x,\) với \(x>0.\) Tính giá trị biểu thức \(P=f\left( \frac{2}{x} \right)+f\left( x \right).\)
Trong không gian với hệ tọa độ Oxyz, mặt cầu tâm \(I\left( 2;1;-3 \right)\) và tiếp xúc với trục Oy có phương trình là:
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) là
Một người gửi tiết kiệm với lãi suất 8,4%/năm và lãi hàng năm được nhập vào vốn. Hỏi sau bao nhiêu năm người đó thu được gấp đôi số tiền ban đầu?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ bên dưới.
Mệnh đề nào dưới đây đúng?
Cho hình lập phương ABCD.MNPQ cạnh bằng A. Tính khoảng cách từ điểm A đến mặt phẳng \(\left( CNQ \right).\)
Cho hình hộp đứng ABCD.A'B'C'D' có AA'=2, đáy ABCD là hình thoi với ABC là tam giác đều cạnh 4. Gọi M,N,P lần lượt là trung điểm của B'C',C'D',DD' và Q thuộc cạnh BC sao cho QC=3QB. Tính thể tích tứ diện MNPQ.
Tìm m để đồ thị hàm số \(y={{x}^{4}}-2m{{x}^{2}}+{{m}^{2}}-1\) cắt trục hoành tại 4 điểm phân biệt.
Có 60 tấm thẻ đánh số từ 1 đến 60. Rút ngẫu nhiên 3 thẻ. Tính xác suất để tổng các số ghi trên 3 thẻ chia hết cho 3.
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình sau:
Số nghiệm của phương trình \(f\left( x \right)=-3\) là
Tập xác định của hàm số \(y={{\log }_{3}}\left( x+1 \right)\) là
Cho hình nón có chiều cao bằng 3 (cm), góc giữa trục và đường sinh bằng \({{60}^{0}}.\) Thể tích khối nón bằng
Tính đạo hàm của hàm số \(y={{2021}^{x}}\) ta được đáp án đúng là?
Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)=x{{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{4}},\forall x\in \mathbb{R}.\) Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là