Câu hỏi Đáp án 2 năm trước 36

Cho hàm số f(x) liên tục trên R thỏa điều kiện \(f\left( x \right) + f\left( { - x} \right) = 2\sin x\). Tính \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} \)

A. -1

B. 0

Đáp án chính xác ✅

C. 1

D. 2

Lời giải của giáo viên

verified HocOn247.com

Giả sử \(I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} \).

Đặt \(t = - x \Rightarrow {\rm{d}}t = - {\rm{d}}x\), đổi cận \(x = - \frac{\pi }{2} \to t = \frac{\pi }{2}x = \frac{\pi }{2} \to t = - \frac{\pi }{2}\).

Khi đó \(I = - \int\limits_{\frac{\pi }{2}}^{ - \frac{\pi }{2}} {f\left( t \right){\rm{d}}t} = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( t \right){\rm{d}}t} \).

Suy ra \(2I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]{\rm{d}}x} = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {2\sin x{\rm{d}}x} = 0 \Rightarrow 2I = 0 \Rightarrow I = 0\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình thang cong (H) giới hạn bởi các đường \(y = {{\rm{e}}^x},y = 0,x = - 1,x = 1\). Thể tích vật thể tròn xoay được tạo ra khi cho hình (H) quay quanh trục hoành bằng

Xem lời giải » 2 năm trước 50
Câu 2: Trắc nghiệm

Khi quay một tam giác đều cạnh bằng a (bao gồm cả điểm trong tam giác) quanh một cạnh của nó ta được một khối tròn xoay. Tính thể tích V của khối tròn xoay đó theo a.

Xem lời giải » 2 năm trước 49
Câu 3: Trắc nghiệm

Hàm số nào sau đây có đồ thị có đường tiệm cận ngang đi qua điểm A(-2;1)?

Xem lời giải » 2 năm trước 48
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho tam giác đều ABC với A(6;3;5) và đường thẳng BC có phương trình tham số \(\left\{ \begin{array}{l} x = 1 - t\\ y = 2 + t\\ z = 2t \end{array} \right..\) Gọi \(\Delta\) là đường thẳng đi qua trọng tâm G của tam giác ABC và vuông góc với mặt phẳng (ABC). Điểm nào dưới đây thuộc đường thẳng \(\Delta\)?

Xem lời giải » 2 năm trước 46
Câu 5: Trắc nghiệm

Trong không gian hệ trục toạ độ Oxyz, tọa độ hình chiếu vuông góc của điểm A(2;-1;0) lên mặt phẳng \(\left( P \right):3x - 2y + z + 6 = 0\) là

Xem lời giải » 2 năm trước 46
Câu 6: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu (S) có tâm I(2;1;-1) và tiếp xúc với (P) có phương trình: 2x - 2y - z + 3 = 0. Bán kính của mặt cầu (S) là:

Xem lời giải » 2 năm trước 45
Câu 7: Trắc nghiệm

Cho một khối nón có chiều cao bằng 4cm, độ dài đường sinh 5cm. Tính thể tích khối nón này.

Xem lời giải » 2 năm trước 44
Câu 8: Trắc nghiệm

Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Với hai số thực dương a, b tùy ý và \(\frac{{{{\log }_3}5.{{\log }_5}a}}{{1 + {{\log }_3}2}} - {\log _6}b = 2.\) Khẳng định nào dưới đây là khẳng định đúng?

Xem lời giải » 2 năm trước 44
Câu 10: Trắc nghiệm

Xác định a, b, c để hàm số \(y = \frac{{ax - 1}}{{bx + c}}\) có đồ thị như hình vẽ bên. Chọn đáp án đúng?

Xem lời giải » 2 năm trước 44
Câu 11: Trắc nghiệm

Xét các số thực a, b, x, y thoả mãn a > 1, b > 1 và \({a^{x - y}} = {b^{x + y}} = \sqrt[3]{{ab}}\). Biết giá trị nhỏ nhất của biểu thức P = 3x + 2y - 1 bằng \(\frac{{\sqrt m }}{n}\) với \(m,\,n \in Z_ + ^*\). Giá trị của S = m - n bằng 

Xem lời giải » 2 năm trước 43
Câu 12: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f\left( x \right) = 2x + 1\)

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Gọi z0 là nghiệm phức có phần ảo âm của phương trình \({z^2} + 2z + 5 = 0\). Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn số phức \(w = {i^{2019}}{z_0}\)?

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Đồ thị sau đây là của hàm số y = -x3 + 3x2 - 4. Với giá trị nào của m thì phương trình x3 - 3x2 + m = 0 có hai nghiệm phân biệt. Hãy chọn 1 câu đúng.

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Cho hàm số y = f(x) liên tục trên đoạn [0;4] có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »