Cho hàm số f(x) liên tục trên \(\mathbb{R}\) thỏa mãn \(f(x)=\left\{\begin{array}{ll}
x+m & \text { khi } x \geq 0 \\
c^{2 x} & \text { khi } x<0
\end{array}\right.\) (m là hằng số). Biết \(\int_{-1}^{2} f(x) \mathrm{d} x=a+b . c^{-2}\) . trong đó a b , là các số hữu tỷ. Tính a + b
A. 1
B. 4
C. 3
D. 0
Lời giải của giáo viên
Do hàm số liên tục trên \(\mathbb{R}\) nên hàm só liên tục tại x=0
\(\Leftrightarrow \lim\limits _{x \rightarrow 0^{+}} f(x)=\lim\limits _{x \rightarrow 0^{-}} f(x)=f(0) \Leftrightarrow m=1\)
Khi đó ta có:
\(\begin{array}{c} \int\limits_{-1}^{2} f(x) \mathrm{d} x=\int\limits_{-1}^{0} f(x) \mathrm{d} x+\int\limits_{0}^{2} f(x) \mathrm{d} x=\int\limits_{-1}^{0} e^{2 x} \mathrm{d} x+\int\limits_{0}^{2}(x+1) \mathrm{d} x \\ =\left.\frac{e^{2 x}}{2}\right|_{-1} ^{0}+\left.\left(\frac{x^{2}}{2}+x\right)\right|_{0} ^{2}=\frac{1}{2}-\frac{e^{-2}}{2}+4=\frac{9}{2}-\frac{1}{2} e^{-2} \end{array}\)
\(\Rightarrow a=\frac{9}{2} ; b=-\frac{1}{2} \Rightarrow a+b=4\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz , mặt phẳng đi qua điểm M (1;2;3) và song song với mặt phẳng \((P): x-2 y+z-3=0\) có phương trình là
Cho x, y, zlà các số thực không âm thoả mãn \(12^{x}+2^{y}+2^{z}=10\) . Giá trị lớn nhất của biểu thức \(P=x+y+3 z\)gần nhất với số nào sau đây?
Trong không gian Oxyz cho mặt cầu (S) có tâm là I (0;0;1) và tiếp xúc với mặt phẳng \((\alpha): 2 x-2 y+z+8=0\) . Phương trình của (S ) là
Cho lăng trụ tam giác đều \(A B C \cdot A^{\prime} B^{\prime} C^{\prime}\) có độ dài cạnh đáy bằng a, góc giữa đường thẳng AB' và mặt phẳng (ABC) bằng \(60^{\circ} .\) . Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho
Tính thể tích V của khối chóp có đáy là hình vuông cạnh bằng 3 và chiều cao bằng 4
Trên mặt phẳng tọa độ, điểm biểu diễn số phức liên hợp của số phức \(z=3+4 i\) là điểm nào dưới dây?
Tất cả các giá trị của m để hàm số \(y=\frac{2 \cos x-1}{\cos x-m}\) đồng biến trên khoảng \(\left(0 ; \frac{\pi}{2}\right)\) là
Trong không gian Oxyz , phương trình mặt phẳng trung trực của đoạn thẳng AB với \(A(3 ;-2 ; 1) \text { và } B(1 ; 0 ; 5)\) là:
Cho hình chóp S. ABC có \(S A=S B\,\, và \,\,C A=C B\) . Góc giữa hai đường thẳng SC và AB bằng
Tổng số đường tiệm cận ngang của đồ thị hàm số \(y=\frac{2 x-1}{x+1}\)
Trong không gian Oxyz , cho điểm \(A(1 ;-3 ; 2)\) Tọa độ điểm A' đối xứng với A điểm qua mặt phẳng (Oyz) là
Xét số phức z thỏa mãn \((\bar{z}+2 i)(z-2)\)là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biễu diễn các số phức z là một đường tròn có tâm là điểm nào dưới đây?
Trong không gian Oxyz , cho đường thẳng \(d: \frac{x-1}{2}=\frac{y+1}{1}=\frac{z-1}{2}\). Véc tơ nào sau đâu là véc tơ chỉ phương của đường thẳng d
Cho Hàm số f(x) liên tục trên \(\mathbb{R}\) và có đồ thị hàm số y =f'(x)như hình vẽ bên dưới
Hàm số \(g(x)=f\left(\frac{5 x}{x^{2}+4}\right)\) có bao nhiêu điểm cực đại?
Cho số phức \(z=2-3 i\) . Phần ảo của số phức z là.