Cho hàm số \(y=f(x)\) thỏa mãn \({\left[ {f'(x)} \right]^2} + f(x).f''(x) = {x^3} - 2x, \forall x \in R\) và \(f(0) = f'(0) = 2\). Tính giá trị của \(T = {f^2}(2).\)
A. \(\frac{{268}}{{15}}\)
B. \(\frac{{160}}{{15}}\)
C. \(\frac{{268}}{{30}}\)
D. \(\frac{4}{{15}}\)
Lời giải của giáo viên
Ta có: \(VT = \left[ {f(x).f'(x)} \right]' = f'(x).f'(x) + f(x).f''(x) = {\left[ {f'(x)} \right]^2} + f(x).f''(x)\)
\( \Rightarrow \left[ {f'(x).f(x)} \right]' = {x^3} - 2x(*)\)
Nguyên hàm hai vế của (*) ta được: \(f'(x).f(x) = \frac{{{x^4}}}{4} - {x^2} + C(1)\)
Lại có: \(f'(0) = f(0) = 2 \Rightarrow C = 2.2 = 4\)
\(\begin{array}{l}
\Rightarrow (1) \Leftrightarrow f(x).f'(x) = \frac{{{x^4}}}{4} - {x^2} + 4\\
\Rightarrow \int {f(x)f'(x)dx = \int {\left( {\frac{{{x^4}}}{4} - {x^2} + 4} \right)} } dx \Leftrightarrow \int {f(x)df(x) = \frac{{{x^5}}}{{20}} - \frac{{{x^3}}}{3} + 4x + A} \\
\Leftrightarrow \frac{{{f^2}(x)}}{2} = \frac{{{x^5}}}{{20}} - \frac{{{x^3}}}{3} + 4x + A \Leftrightarrow {f^2}(x) = \frac{{{x^5}}}{{10}} - \frac{{2{x^3}}}{3} + 8x + 2A
\end{array}\)
Có \(f(0) = 2 \Rightarrow 4 = 2A \Leftrightarrow A = 2\)
\(\begin{array}{l}
\Rightarrow {f^2}(x) = \frac{{{x^5}}}{{10}} - \frac{{2{x^3}}}{3} + 8x + 4\\
\Rightarrow {f^2}(2) = \frac{{{2^5}}}{{10}} - \frac{{{{2.2}^3}}}{3} + 8.2 + 4 = \frac{{268}}{{15}}
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho một tập hợp A gồm 9 phân tử. Có bao nhiêu cặp tập con khác rỗng không giao nhau của tập A?
Trong không gian với hệ trục tọa độ Oxyz cho \(\overrightarrow a = (1; - 2;3)\) và \(\overrightarrow b = (2; - 1; - 1)\). Khẳng định nào sau đây đúng?
Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \frac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa bằng 792. Giá trị của m là:
Cho tứ diện ABCD có \((ACD) \bot (BCD),AC = AD = BC = BD = a,CD = 2x\). Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2018;2018} \right]\) để phương trình \({\left( {x + 2 - \sqrt {{x^2} + 1} } \right)^2} + \frac{{18\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }}{{x + 2 + \sqrt {{x^2} + 1} }} = m\left( {{x^2} + 1} \right)\) có nghiệm thực?
Cho hàm số \(y=f(x)\) có \(f'(x) > 0,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\frac{1}{x}} \right) < f\left( 1 \right)\)
Cho hàm số \(y=f(x)\) có đạo hàm \(y' = {x^2}(x - 2)\). Mệnh đề nào sau đây đúng?
Tìm tập nghiệm S của phương trình \({2^{x + 1}} = 4\)
Xác định các hệ số a, b, c để đồ thị hàm số có đồ thị hàm số như hình vẽ bên:
Cho hai góc nhọn a và b thỏa mãn \(\tan a = \frac{1}{7}\) và \(\tan b = \frac{3}{4}\). Tính a + b.
Cho hình chóp S.ABCD có \(SC = x(0 < x < a\sqrt 3 )\), các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi \(x = \frac{{a\sqrt m }}{n}(m,n \in N*)\). Mệnh đề nào sau đây đúng?
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);B\left( {0;0;3} \right);C\left( {0; - 3;0} \right)\) và mặt phẳng (P): \(x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất.
Giá trị lớn nhất của hàm số \(y = {x^2} + \frac{{16}}{x}\) trên đoạn \(\left[ {\frac{3}{2};4} \right]\) bằng:
Tìm tất cả các giá trị của tham số m để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.
Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm C trên trục Ox, có hoành độ dương sao cho tam giác ABC vuông tại C.