Cho hàm số \(y=f\left( x \right)\), hàm số \(y={f}'\left( x \right)\) có đồ thị như hình bên. Hàm số \(g\left( x \right)=2f\left( \frac{5\sin x-1}{2} \right)+\frac{{{(5\sin x-1)}^{2}}}{4}+3\) có bao nhiêu điểm cực trị trên khoảng \(\left( 0;2\pi \right)\).
A. 0
B. 7
C. 6
D. 8
Lời giải của giáo viên
Ta có: \(g'\left( x \right) = 5\cos xf'\left( {\frac{{5\sin x - 1}}{2}} \right) + \frac{5}{2}\cos x\left( {5\sin x - 1} \right)\).
\(g'\left( x \right) = 0 \Leftrightarrow 5\cos xf'\left( {\frac{{5\sin x - 1}}{2}} \right) + \frac{5}{2}\cos x\left( {5\sin x - 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l} \cos x = 0\\ f'\left( {\frac{{5\sin x - 1}}{2}} \right) = - \frac{{5\sin x - 1}}{2} \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l} \cos x = 0\\ \frac{{5\sin x - 1}}{2} = - 3\\ \frac{{5\sin x - 1}}{2} = - 1\\ \frac{{5\sin x - 1}}{2} = \frac{1}{3}\\ \frac{{5\sin x - 1}}{2} = 1 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \cos x = 0\\ 5\sin x - 1 = - 6\\ 5\sin x - 1 = - 2\\ 5\sin x - 1 = \frac{2}{3}\\ 5\sin x - 1 = 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \cos x = 0\\ \sin x = - 1\\ \sin x = - \frac{1}{5}\\ \sin x = \frac{1}{3}\\ \sin x = \frac{3}{5} \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l} \cos x = 0\\ \sin x = - 1\\ \sin x = - \frac{1}{5}\\ \sin x = \frac{1}{3}\\ \sin x = \frac{3}{5} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{2} \vee x = \frac{{3\pi }}{2}\\ x = \frac{{3\pi }}{2}\\ x = \pi - arc\sin \left( { - \frac{1}{5}} \right) \vee x = 2\pi + arc\sin \left( { - \frac{1}{5}} \right)\\ x = arc\sin \left( {\frac{1}{3}} \right) \vee x = \pi - arc\sin \left( {\frac{1}{3}} \right)\\ x = arc\sin \left( {\frac{3}{5}} \right) \vee x = \pi - arc\sin \left( {\frac{3}{5}} \right) \end{array} \right.\)
Suy phương trình g'(x) = 0 có 9 nghiệm, trong đó có nghiệm \(x = \frac{{3\pi }}{2}\) là nghiệm kép.
Vậy hàm số y = g(x) có 7 cực trị.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z=-5+2i. Phần thực và phần ảo của số phức \(\bar{z}\) lần lượt là
Cho số phức \(z,\,{{z}_{1}},\,{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}-4-5i \right|=\left| {{z}_{2}}-1 \right|=1\) và \(\left| \overline{z}+4i \right|=\left| z-8+4i \right|\). Tính \(\left| {{z}_{1}}-{{z}_{2}} \right|\,\,\) khi \(P=\left| z-{{z}_{1}} \right|\,+\left| z-{{z}_{2}} \right|\) đạt giá trị nhỏ nhất
Cho số phức z thoả mãn \(\frac{1+i}{z}\) là số thực và \(\left| z-2 \right|=m\) với \(m\in \mathbb{R}\). Gọi \({{m}_{0}}\) là một giá trị của m để có đúng một số phức thoả mãn bài toán. Khi đó
Tính tích phân \(I=\int\limits_{1}^{2}{2x\sqrt{{{x}^{2}}-1}\text{d}x}\) bằng cách đặt \(u={{x}^{2}}-1\), mệnh đề nào dưới đây đúng?
Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có \(A\left( -1;1;6 \right), B\left( -3;-2;-4 \right), $C\left( 1;2;-1 \right), D\left( 2;-2;0 \right)\). Điểm \(M\left( a;b;c \right)\) thuộc đường thẳng CD sao cho tam giác ABM có chu vi nhỏ nhất. Tính a+b+c.
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+10y-6z+49=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).
Cho hàm số \(f\left( x \right)\) không âm, có đạo hàm trên đoạn \(\left[ 0\,;\,1 \right]\) và thỏa mãn \(f\left( 1 \right)=1, \left[ 2f\left( x \right)+1-{{x}^{2}} \right]{f}'\left( x \right)=2x\left[ 1+f\left( x \right) \right], \forall x\in \left[ 0\,;\,1 \right]\). Tích phân \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
Cho số phức z thỏa mãn \(\left( 1-i \right)z+4\bar{z}=7-7i\). Khi đó, môđun của z bằng bao nhiêu?
Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=x\left( x+1 \right){{\left( x-2 \right)}^{2}}\) với mọi \(x\in \mathbb{R}\). Giá trị nhỏ nhất của hàm số \(y=f\left( x \right)\) trên đoạn \(\left[ -1;2 \right]\) là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy \(\left( ABCD \right)\), biết \(SD=2a\sqrt{5}\), SC tạo với mặt đáy \(\left( ABCD \right)\) một góc \(60{}^\circ \). Tính theo a khoảng cách giữa hai đường thẳng DM và SA.
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Cho các mệnh đề sau:
I. Hàm số đồng biến trên các khoảng \(\left( -\infty ;-3 \right)\) và \(\left( -3;-2 \right)\).
II. Hàm số đồng biến trên khoảng \(\left( -\infty ;-2 \right)\).
III. Hàm số nghịch biến trên khoảng \(\left( -2;+\infty \right)\).
IV. Hàm số đồng biến trên \(\left( -\infty ;5 \right)\).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
Rút gọn biểu thức \(A=\frac{\sqrt[3]{{{a}^{7}}}.{{a}^{\frac{11}{3}}}}{{{a}^{4}}.\sqrt[7]{{{a}^{-5}}}}\) với a>0 ta được kết quả \(A={{a}^{\frac{m}{n}}}\) trong đó m, \(n\in {{N}^{*}}\) và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?
Tìm tập xác định D của hàm số \(y={{\left( {{x}^{2}}-2x+1 \right)}^{\frac{1}{3}}}\).