Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. \(\left( { - 2; + \infty } \right)\)
B. \(\left( {0; + \infty } \right)\)
C. \(\left( { - \infty ; - 2} \right)\)
D. \(\left( { - \frac{3}{2}; + \infty } \right)\)
Lời giải của giáo viên
Dựa vào bảng biến thiên ta thấy \(h'\left( x \right)>0\) trên các khoảng \(\left( -\infty ;-3 \right)\) và \(\left( -1;+\infty\right)\)
Hàm số đồng biến trên \(\left( -\infty ;-3 \right)\) và \(\left( -1;+\infty\right)\Rightarrow \) hàm số đồng biến trên \(\left( 0;+\infty \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số: \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( 0;4 \right)\) có hệ số góc k chia \(\left( H \right)\) thành hai phần có diện tích bằng nhau.
Gieo một con súc sắc ba lần. Xác suất để được mặt số hai xuất hiện cả ba lần là.
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-x}{-x+2}\) có phương trình lần lượt là
Tìm các khoảng đồng biến của hàm số \(y={{x}^{3}}+3{{x}^{2}}+1\).
Cho \(\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}dx=a\sqrt{5}+b\sqrt{2},\,\,}\) với \(a,\,\,b\in \mathbb{R}.\) Tính giá trị biểu thức A=a+b.
Cho hình chóp S.ABC có SA=SB=CB=CA, hình chiếu vuông góc của S lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm I của cạnh AB. Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng.
Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y+3}{2}=\frac{z-2}{-1}.\)
Một khối lăng trụ có chiều cao bằng 2a và diện tích đáy bằng \(2{{a}^{2}}\). Tính thể tích khối lăng trụ
Cho hai số phức \({{z}_{1}}=3-i\) và \({{z}_{2}}=-1+i\). Phần ảo của số phức \({{z}_{1}}{{z}_{2}}\) bằng
Nguyên hàm của hàm số \(f\left( x \right)=\cos 6x\) là
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm \(I(\left( 1;-2;3 \right)\) và \(\left( S \right)\) đi qua điểm \(A\left( 3;0;2 \right)\).
Số giao điểm của đồ thị hàm số \(y=\frac{x+1}{x-1}\) và đường thẳng y=2 là
Cho đồ thị hàm số y = f(x) có dạng hình vẽ bên. Tính tổng tất cả giá trị nguyên của m để hàm số y = |f(x) -2m + 5| có 7 điểm cực trị.
Tổng bình phương các nghiệm của phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) = 0\) bằng