Cho hàm số \(y=f\left( x \right)\) có đạo hàm đến cấp hai trên \(\mathbb{R}\) và \(f\left( 0 \right)=0;f''\left( x \right)>-\frac{1}{6},\forall x\in \mathbb{R}\). Biết hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(g\left( x \right)=\left| f\left( {{x}^{2}} \right)-mx \right|\), với m là tham số dương, có nhiều nhất bao nhiêu điểm cực trị?
A. 1
B. 2
C. 5
D. 3
Lời giải của giáo viên
Từ đồ thị hàm số \(y=f'\left( x \right)\) suy ra \(f'\left( x \right)>0,\forall x\in \left( 0;+\infty \right)\)
Do đó, \(f'\left( {{x}^{2}} \right)>0,\forall x\in \left( 0;+\infty \right)\)
Xét hàm số \(h\left( x \right)=f\left( {{x}^{2}} \right)-mx;h'\left( x \right)=2x.f'\left( {{x}^{2}} \right)-m\).
Với \(x<0,h'(x)<0\Rightarrow \) Phương trình \(h'\left( x \right)=0\) vô nghiệm.
Với \(x\ge 0\) ta có \(h''\left( x \right)=2f'\left( {{x}^{2}} \right)+4{{x}^{2}}f''\left( {{x}^{2}} \right)>2f'\left( {{x}^{2}} \right)-\frac{2{{x}^{2}}}{3}\)
Từ đồ thị hàm số \(y=f'\left( x \right)\) ta thấy với \(x\ge 0\), đồ thị hàm số \(y=f'\left( x \right)\) luôn nằm trên đường thẳng \(y=\frac{x}{3}\).
Do đó, \(2f'\left( {{x}^{2}} \right)-\frac{2{{x}^{2}}}{3}\ge 0,\forall x\ge 0\Rightarrow h''\left( x \right)\ge 0,\forall x\ge 0\) hay hàm số \(y=h'\left( x \right)\) đồng biến trên \((0;+\infty )\).
Mà \(h'\left( 0 \right)=-m<0\) và \(\underset{x\to +\infty }{\mathop{\lim }}\,h'\left( x \right)=+\infty \) nên phương trình \(h'\left( x \right)=0\) có một nghiệm duy nhất \({{x}_{0}}\in \left( 0;+\infty \right)\).
Bảng biến thiên:
Khi đó phương trình \(h\left( x \right)=0\) có 2 nghiệm phân biệt.
Đồng thời hàm số \(y=h\left( x \right)\) đạt cực tiểu tại \(x={{x}_{0}}\), giá trị cực tiểu \(h\left( {{x}_{0}} \right)<0\).
Vậy hàm số \(y=\left| h\left( x \right) \right|\) có 3 điểm cực trị.
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Điểm \(M\left( a,b \right)\left( a>0 \right)\) thuộc \(\left( C \right)\) sao cho khoảng cách từ M tới tiệm cận đứng của \(\left( C \right)\) bằng khoảng cách M tới tiệm cận ngang của \(\left( C \right)\). Mệnh đề nào dưới đây đúng?
Cho hàm số \(y=f(x)\) có đạo hàm tại \(x=1\) và \({f}'(1)\ne 0\). Gọi \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) lần lượt là hai tiếp tuyến của đồ thị hàm số \(y=f(x)\) và \(y=g(x)=x.f(2\text{x}-1)\) tại điểm có hoành độ \(x=1\). Biết rằng hai đường thẳng \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) vuông góc với nhau. Khẳng định nào sau đây đúng?
Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng
Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?
Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{align} & 1\text{x}=2+2t \\ & y=-1-3t \\ & z=1 \\ \end{align} \right.(t\in \mathbb{R})\). Xét đường thẳng \(\Delta :\frac{x-1}{1}=\frac{y-3}{m}=\frac{z+2}{-2}\), với m là tham số thực khác 0. Tìm tất cả các giá trị thực của m để đường thẳng Δ vuông góc với đường thẳng d.
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {{x^2} - 2mx + 3\,\,\,\left( {x \le 1} \right)}\\ {nx + 10\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x > 1} \right)} \end{array}} \right.\), trong đó m,n là hai tham số thực. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left( x \right)\) có đúng hai điểm cực trị?
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right)\). Phương trình tham số của \(\Delta \) là
Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng
Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có \(AB=a,\) góc giữa đường thẳng \({A}'C\) và mặt phẳng \(\left( ABC \right)\) bằng 45°. Thể tích của khối lăng trụ \(ABC.{A}'{B}'{C}'\) bằng