Lời giải của giáo viên
Từ đồ thị hàm số ta thấy hàm số có ba điểm cực trị trong đó có hai điểm cực tiểu và một điểm cực đại.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức \(z=3+i\). Phần thực của số phức \(2z+1+i\) bằng
Cho parabol \(\left( P \right):y={{x}^{2}}\) và một đường thẳng d thay đổi cắt \(\left( P \right)\) tại hai điểm A, B sao cho AB=2018. Gọi S là diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng d. Tìm giá trị lớn nhất \({{S}_{max}}\) của S.
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.
Đồ thị hàm số \(y=\left| f\left( x-2017 \right)+2018 \right|\) có bao nhiêu điểm cực trị?
Cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-3=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).
Tính tích phân \(I=\int\limits_{0}^{1}{{{8}^{x}}\text{d}x}\).
Tất cả nguyên hàm của hàm số \(f\left( x \right)=\frac{1}{2x+3}\) là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\) và \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\in \left( S \right)\) sao cho \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\) đạt giá trị nhỏ nhất. Khi đó \({{x}_{0}}+{{y}_{0}}+{{z}_{0}}\) bằng
Tìm nguyên hàm của hàm số \(f(x)={{\text{e}}^{x}}+2\sin x\).
Cho cấp số nhân \(\left( {{u}_{n}} \right)\) có số hạng đầu \({{u}_{1}}=5\) và \({{u}_{6}}=-160.\) Công sai q của cấp số nhân đã cho là
Cho hình chóp S.ABCD có đáy là hình chữ nhật có cạnh AB=2,AD=4. Cạnh bên SA=2 và vuông góc với đáy (tham khảo hình vẽ). Thể tích V của khối chóp S.ABCD bằng
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} 4x\quad \,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\;x > 2\\ - 2x + 12\quad {\rm{khi}}\;x \le 2 \end{array} \right.\). Tính tích phân \(I = \int\limits_0^{\sqrt 3 } {\frac{{x.f(\sqrt {{x^2} + 1} )}}{{\sqrt {{x^2} + 1} }}dx} + 4\int\limits_{\ln 2}^{\ln 3} {{e^{2x}}.f\left( {1 + {e^{2x}}} \right)dx} \)
Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ 0;3 \right]\) và \(\int\limits_{0}^{2}{f\left( x \right)\text{d}x}=1, \int\limits_{2}^{3}{f\left( x \right)\text{d}x}=4\). Tính \(I=\int\limits_{0}^{3}{f\left( x \right)\text{d}x}\).
Trong không gian với hệ tọa độ Oxy, cho hai điểm \(A\left( 1\,;\,1\,;\,0 \right), B\left( 0\,;\,3\,;\,3 \right)\). Khi đó