Câu hỏi Đáp án 2 năm trước 40

Cho parabol \(\left( P \right):y={{x}^{2}}\) và một đường thẳng d thay đổi cắt \(\left( P \right)\) tại hai điểm A, B sao cho AB=2018. Gọi S là diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng d. Tìm giá trị lớn nhất \({{S}_{max}}\) của S.

A. \({S_{max}} = \frac{{{{2018}^3} + 1}}{6}\)

B. \({S_{max}} = \frac{{{{2018}^3}}}{3}\)

C. \({S_{max}} = \frac{{{{2018}^3} - 1}}{6}\)

D. \({S_{max}} = \frac{{{{2018}^3}}}{3}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Giả sử \(A(a;\,{{a}^{2}}); B(b;\,{{b}^{2}})\,(b>a)\) sao cho AB=2018.

Phương trình đường thẳng d là: y=(a+b)x-ab. Khi đó

\(S=\int\limits_{a}^{b}{\left| (a+b)x-ab-{{x}^{2}} \right|\text{d}x}=\int\limits_{a}^{b}{\left( \left( a+b \right)x-ab-{{x}^{2}} \right)\text{d}x}=\frac{1}{6}{{\left( b-a \right)}^{3}}\).

Vì \(AB=2018\Leftrightarrow {{\left( b-a \right)}^{2}}+{{\left( {{b}^{2}}-{{a}^{2}} \right)}^{2}}={{2018}^{2}}\Leftrightarrow {{\left( b-a \right)}^{2}}\left( 1+{{\left( b+a \right)}^{2}} \right)={{2018}^{2}}\).

\(\Rightarrow {{\left( b-a \right)}^{2}}\le {{2018}^{2}}\Rightarrow \left| b-a \right|=b-a\le 2018\Rightarrow S\le \frac{{{2018}^{3}}}{6}\).

Vậy \({{S}_{\max }}=\frac{{{2018}^{3}}}{6}\) khi a=-1009 và b=1009

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho số phức \(z=3+i\). Phần thực của số phức \(2z+1+i\) bằng

Xem lời giải » 2 năm trước 42
Câu 2: Trắc nghiệm

Cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-3=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).

Xem lời giải » 2 năm trước 39
Câu 3: Trắc nghiệm

Tính tích phân \(I=\int\limits_{0}^{1}{{{8}^{x}}\text{d}x}\).

Xem lời giải » 2 năm trước 39
Câu 4: Trắc nghiệm

Tất cả nguyên hàm của hàm số \(f\left( x \right)=\frac{1}{2x+3}\) là

Xem lời giải » 2 năm trước 39
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\) và \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\in \left( S \right)\) sao cho \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\) đạt giá trị nhỏ nhất. Khi đó \({{x}_{0}}+{{y}_{0}}+{{z}_{0}}\) bằng

Xem lời giải » 2 năm trước 38
Câu 6: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.

Đồ thị hàm số \(y=\left| f\left( x-2017 \right)+2018 \right|\) có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 38
Câu 7: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình bên. Tìm số cực trị của hàm số \(y=f\left( x \right)\)

Xem lời giải » 2 năm trước 38
Câu 8: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f(x)={{\text{e}}^{x}}+2\sin x\).

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Trong không gian với hệ tọa độ Oxy, cho hai điểm \(A\left( 1\,;\,1\,;\,0 \right), B\left( 0\,;\,3\,;\,3 \right)\). Khi đó

Xem lời giải » 2 năm trước 37
Câu 10: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} 4x\quad \,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\;x > 2\\ - 2x + 12\quad {\rm{khi}}\;x \le 2 \end{array} \right.\). Tính tích phân \(I = \int\limits_0^{\sqrt 3 } {\frac{{x.f(\sqrt {{x^2} + 1} )}}{{\sqrt {{x^2} + 1} }}dx}  + 4\int\limits_{\ln 2}^{\ln 3} {{e^{2x}}.f\left( {1 + {e^{2x}}} \right)dx} \)

Xem lời giải » 2 năm trước 37
Câu 11: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình chữ nhật có cạnh AB=2,AD=4. Cạnh bên SA=2 và vuông góc với đáy (tham khảo hình vẽ). Thể tích V của khối chóp S.ABCD bằng

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Cho cấp số nhân \(\left( {{u}_{n}} \right)\) có số hạng đầu \({{u}_{1}}=5\) và \({{u}_{6}}=-160.\) Công sai q của cấp số nhân đã cho là

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Đạo hàm của hàm số \(y={{\log }_{5}}x\) là

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Nghiệm của phương trình \({{9}^{2x+1}}=81\) là

Xem lời giải » 2 năm trước 36
Câu 15: Trắc nghiệm

Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).

Xem lời giải » 2 năm trước 36

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »