Cho hàm số \(y=f\left( x \right)\) liên tục tại \({{x}_{0}}\) và có bảng biến thiên.
Khi đó đồ thị hàm số đã cho có:
A. Một điểm cực đại, hai điểm cực tiểu.
B. Hai điểm cực đại, một điểm cực tiểu.
C. Một đường tiệm cận đứng và một đường tiệm cận ngang.
D. Một điểm cực đại, một điểm cực tiểu.
Lời giải của giáo viên
Dựa vào bảng biến thiên ta thấy hàm số \(f'\left( x \right)\) đổi dấu từ âm sang dương khi đi qua \({{x}_{0}}\) và \(f'\left( x \right)\) đổi dấu từ dương sang âm khi đi qua \({{x}_{1}}.\)
Hàm số không xác định tại \({{x}_{2}}.\)
Vậy hàm số có một điểm cực đại, một điểm cực tiểu.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có dấu của \(f'\left( x \right)\) như sau
Hàm số \(y=f\left( 2-x \right)\) có bao nhiêu điểm cực trị?
Cắt một khối cầu bởi một mặt phẳng đi qua tâm thì được một hình tròn có diện tích bằng \(16\pi .\) Tính diện tích của mặt cầu giới hạn nên khối cầu đó?
Phương trình đường tiệm cận đứng của đồ thị hàm số \(y=\frac{\sqrt{10-x}}{{{x}^{2}}-100}\) là:
Cho hình lăng trụ \(ABC.A'B'C'\) có chiều cao bằng 8 và đáy là tam giác đều cạnh bằng 6. Gọi \(M,N,P\) lần lượt là tâm của các mặt bên \(ABB'A',ACC'A'\) và \(BCC'B'.\) Thể tích của khối đa diện lồi có các đỉnh là các điểm \(A,B,C,M,N,P\) bằng:
Cho tam giác \(ABC\) có \(BC=a,CA=b,AB=c.\) Nếu \(a,b,c\) theo thứ tự lập thành một cấp số nhân thì
Cho \(0<a<1.\) Tìm mệnh đề đúng trong các mệnh đề sau
Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)=\cos x\sqrt{\sin x+1}.\)
Cho lăng trụ đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a.\) Gọi \(\alpha \) là góc giữa mặt phẳng \(\left( A'BC \right)\) và mặt phẳng \(\left( ABC \right).\) Tính \(\tan \alpha .\)
Trong không gian với hệ trục tọa độ \(Oxyz\), để hai vecto \(\overrightarrow{a}=(m;2;3)\) và \(\overrightarrow{b}=(1;n;2)\) cùng phương thì \(2m+3n\) bằng
Một cấp số cộng có \({{u}_{2}}=5\) và \({{u}_{3}}=9.\) Khẳng định nào sau đây đúng?
Tổng các giá trị nguyên âm của \(m\) để hàm số \(y={{x}^{3}}+mx-\frac{1}{5{{x}^{5}}}\) đồng biến trên khoảng \(\left( 0;+\infty \right)\)?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SD=\frac{a\sqrt{17}}{2},\) hình chiếu vuông góc \(H\) của \(S\) trên \(\left( ABCD \right)\) là trung điểm của đoạn \(AB. \) Gọi \(K\) là trung điểm của đoạn \(AD. \) Khoảng cách giữa hai đường \(HK\) và \(SD\) theo \(a\) là:
Cho \(x,y\) là các số thực thỏa mãn \(x\ne 0\) và \({{\left( {{3}^{{{x}^{2}}}} \right)}^{3y}}={{27}^{x}}.\) Khẳng định nào sau đây là khẳng định đúng?
Cho tập Y gồm 5 điểm phân biệt trên mặt phẳng. Số véc-tơ khác \(\overrightarrow{0}\) có điểm đầu, điểm cuối thuộc tập Y là