Lời giải của giáo viên
\(2\left| {f\left( x \right)} \right| - 5 = 0 \Leftrightarrow \left| {f\left( x \right)} \right| = \dfrac{5}{2} \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = \dfrac{5}{2}\;\;\;\left( 1 \right)\\f\left( x \right) = - \dfrac{5}{2}\;\;\left( 2 \right)\end{array} \right.\)
Số nghiệm của phương trình đã cho là tổng số nghiệm của phương trình (1) và phương trình (2).
Số nghiệm của phương trình đã cho là số giao điểm của đường thẳng \(y = \dfrac{5}{2}\) và đường thẳng \(y = - \dfrac{5}{2}\) với đồ thị hàm số \(y = f\left( x \right).\)
Như vậy, dựa vào đồ thị hàm số ta thấy phương trình đã cho có 4 nghiệm.
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức \(z\) thỏa mãn \(\left( {2 + 3i} \right)z + 4 - 3i = 13 + 4i.\) Mô đun của \(z\) bằng
Cho khối nón có chiều cao bằng \(2a\) và bán kính đáy bằng \(a\) . Thể tích của khối nón đã cho bằng
Trong không gian Oxyz, cho các điểm \(A\left( { - 1;2;1} \right),\,\,B\left( {2; - 1;4} \right),\,\,C\left( {1;1;4} \right)\). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABC} \right)\)?
Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} - 2x.\) Giá trị của \(x_1^2 + x_2^2\) bằng:
Cho \(\left( {{u_n}} \right)\)là một cấp số cộng thỏa mãn \({u_1} + {u_3} = 8\) và \({u_4} = 10.\) Công sai của cấp số cộng đã cho bằng
Trong không gian \({\rm{Ox}}yz,\) vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng \(\left( P \right):\,2y - 3z + 1 = 0?\)
Cho khối chóp \(SABCD\) có đáy \(ABCD\) là hình thoi tâm \(O,\;AB = a,\;\angle BAD = {60^0},\;SO \bot \left( {ABCD} \right)\) và mặt phẳng \(\left( {SCD} \right)\) tạo với mặt đáy một góc bằng \({60^0}.\) Thể tích khối chóp đã cho bằng:
Cho hình trụ \(\left( T \right)\) có chiều cao bằng 2a. Hai đường tròn đáy của \(\left( T \right)\) có tâm lần lượt là O và \({O_1}\) và bán kính bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm \({O_1}\) lấy điểm B sao cho \(AB = \sqrt 5 a\). Thể tích khối tứ diện \(O{O_1}AB\) bằng:
Họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{{x + 3}}{{{x^2} + 3x + 2}}\) là:
Trong không gian \({\rm{Ox}}yz,\) cho hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {0; - 1;1} \right)\) .Trung điểm của đoạn thẳng \(AB\) có tọa độ là:
Với các số \(a,\;b > 0\) thỏa mãn \({a^2} + {b^2} = 6ab,\) biểu thức \({\log _2}\left( {a + b} \right)\) bằng:
Trong không gian Oxyz, cho hai điểm \(A\left( {3;1; - 3} \right),\,\,B\left( {0; - 2;3} \right)\) và mặt cầu \(\left( S \right):\,\,{\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 1\). Xét điểm M thay đổi luôn thuộc mặt cầu \(\left( S \right)\), giá trị lớn nhất của \(M{A^2} + 2M{B^2}\) bằng:
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị \(\left( C \right)\) . Hệ số góc \(k\) của tiếp tuyến với \(\left( C \right)\) tại điểm có hoành độ bằng 1 bằng
Giá trị lớn nhất của hàm số \(f\left( x \right) = \dfrac{{{x^2} - 8x}}{{x + 1}}\) trên đoạn \(\left[ {1;\;3} \right]\) bằng: