Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\). Mệnh đề nào dưới đây là đúng.
A. Hàm số nghịch biến trên các khoảng \(\left( -\infty ;-1 \right)\) và \(\left( 1;+\infty \right)\).
B. Hàm số đồng biến trên các khoảng \(\left( -\infty ;-1 \right)\) và \(\left( -1;+\infty \right)\).
C. Hàm số luôn nghịch biến trên R
D. Hàm số đồng biến trên R
Lời giải của giáo viên
TXĐ: \(D=\mathbb{R}\backslash \left\{ -1 \right\}.\)
\({y}'=\frac{3}{{{\left( x+1 \right)}^{2}}}>0,\text{ }\forall x\ne -1.\)
Suy ra hàm số đồng biến trên các khoảng \(\left( -\infty ;-1 \right)\) và \(\left( 1;+\infty \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối chóp S.ABC có \(SA\,\bot \,\,\left( ABC \right)\), tam giác ABC vuông tại B, \(AC=\,2a, BC=a,SB=2a\sqrt{3}\). Tính góc giữa SA và mặt phẳng \(\,\left( SBC \right)\).
Điểm nào trong hình vẽ bên là điểm biểu diễn của số phức \(z = - 1 + 2i?\)
Cho khối chóp có diện tích đáy bằng 6cm2 và có chiều cao là 2cm. Thể tích của khối chóp đó là:
Cho số phức z = a + bi ( với \(a,b \in R\)) thỏa \(\left| z \right|\left( {2 + i} \right) = z - 1 + i\left( {2z + 3} \right)\). Tính S = a + b.
Họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}\) là
Tổng lập phương các nghiệm thực của phương trình \({3^{{x^2} - 4x + 5}} = 9\) là
Cho số phức \({{z}_{1}}=3+2i\), \(\,{{z}_{2}}=6+5i\). Tìm số phức liên hợp của số phức \(z=6{{z}_{1}}+5{{z}_{2}}\)
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm A(1;0;1) và B(3;2;-1).
Trong không gian với trục hệ tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}.\) Tọa độ của vectơ \(\overrightarrow{a}\) là:
Một nguyên hàm của hàm số \(f(x) = {(x + 1)^3}\) là
Cho \(\int\limits_0^1 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 5\), khi đó \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} + 4x - 2y - 4 = 0\).Tính bán kính R của (S).
Đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 4}}{{x + 2}}\) là
Số nghiệm nguyên của bất phương trình \({\left( {17 - 12\sqrt 2 } \right)^x} \ge {\left( {3 + \sqrt 8 } \right)^{{x^2}}}\) là