Lời giải của giáo viên
Kẻ \(AH\bot \,SB\,\) (\(H\in SB\)) (1). Theo giả thiết ta có \(\left\{ \begin{align} & BC\bot \,SA \\ & BC\bot \,AB \\ \end{align} \right.\)
\(\Rightarrow \,BC\bot \,\left( SAB \right)\Rightarrow \,BC\bot \,AH\,\)(2) .
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra, \(AH\bot \,\left( SBC \right)\). Do đó góc giữa SA và mặt phẳng \(\,\left( SBC \right)\) bằng góc giữa SA và SH bằng góc \(\widehat{ASH}\)
Ta có \(AB=\,\sqrt{A{{C}^{2}}-B{{C}^{2}}}=\,\,a\sqrt{3}\). Trong vuông \(\Delta SAB\) ta có \(\sin ASB=\,\frac{AB}{SB}=\,\frac{a\sqrt{3}}{2a\sqrt{3}}=\,\frac{1}{2}\). Vậy \(\widehat{ASB}=\widehat{ASH}={{30}^{\circ }}\,\).
Do đó góc giữa SA và mặt phẳng \(\,\left( SBC \right)\) bằng \(30{}^\circ \).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\). Mệnh đề nào dưới đây là đúng.
Cho khối chóp có diện tích đáy bằng 6cm2 và có chiều cao là 2cm. Thể tích của khối chóp đó là:
Điểm nào trong hình vẽ bên là điểm biểu diễn của số phức \(z = - 1 + 2i?\)
Cho số phức z = a + bi ( với \(a,b \in R\)) thỏa \(\left| z \right|\left( {2 + i} \right) = z - 1 + i\left( {2z + 3} \right)\). Tính S = a + b.
Họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}\) là
Tổng lập phương các nghiệm thực của phương trình \({3^{{x^2} - 4x + 5}} = 9\) là
Cho số phức \({{z}_{1}}=3+2i\), \(\,{{z}_{2}}=6+5i\). Tìm số phức liên hợp của số phức \(z=6{{z}_{1}}+5{{z}_{2}}\)
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm A(1;0;1) và B(3;2;-1).
Trong không gian với trục hệ tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}.\) Tọa độ của vectơ \(\overrightarrow{a}\) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} + 4x - 2y - 4 = 0\).Tính bán kính R của (S).
Một nguyên hàm của hàm số \(f(x) = {(x + 1)^3}\) là
Đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 4}}{{x + 2}}\) là
Cho \(\int\limits_0^1 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 5\), khi đó \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng \(\Delta \) là giao tuyến của hai mặt phẳng \(\left( P \right):z - 1 = 0\) và \(\left( Q \right):x + y + z - 3 = 0\). Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng \(\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\) và vuông góc với đường thẳng \(\Delta \). Phương trình của đường thẳng d là